pyhton_基尼指数计算

基尼指数是一种衡量样本集合纯度的指标,它表示随机选取一个样本被错误分类的概率。指数越小,表示集合纯度越高,分类效果越好。本文由作者WangB分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1.定义:基尼指数(基尼不纯度):表示在样本集合中一个随机选中的样本被分错的概率。

     注意 Gini指数越小表示集合中被选中的样本被分错的概率越小,也就是说集合的纯度越高,反之,集合越不纯。

def gini_index_single(a,b):
    single_gini = 1 - ((a/(a+b))**2) - ((b/(a+b))**2)
    return round(single_gini,4)

# 求取基尼指数
def gini_index(a,b,c,d,e,f):
    zuo = gini_index_single(a,b)
    zhong = gini_index_single(c,d)
    you = gini_index_single(e,f)
    sum = a+b+c+d+e+f
    gini_index = zuo*((a+b)/sum) + zhong*((c+d)/sum) + you*((e+f)/sum)
    return round(gini_index,4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值