数据结构--优先级队列(堆)

一.优先级队列

概念:队列的元素是遵循先进先出的原则,而优先级队列是优先级最高的先出队列

二.堆

概念:

对一个集合元素,堆是按照完全二叉树的顺序存储方式把数据存储到一维数组

分为大根堆和小根堆

图像:

性质:

堆中某个节点的值总是不大于或不小于其父节点的值;

堆总是一棵完全二叉树。

三.大小堆的模拟实现

可以分为向上和向下过程分为俩种模式

向下过程:

向上过程:

    public void shiftUp(int child){
        int pre =(child-1)/2;
        while (pre >= 0) {
            if(elem[pre]<elem[child]){
                swap(elem,child,pre);
                child=pre;
                pre=(child-1)/2;
            }else {
                break;
            }
        }
    }

四.PriorityQueue的模拟实现

public void offer(int value){
        if(isFull()){
            grow();
        }
        elem[size]=value;
        shiftUp(size);
        size++;
    }


    public  int poll(){
        if(isEmpty()){
            return -1;
        }
        int ret =elem[0];
        size--;
        swap(elem,0,size);
        shiftDown(0,size);
        return ret;
    }

    public int peek(){
        if (isEmpty()){
            return -1;
        }
        return elem[0];
    }

注意:

利用以上的offer方法(向上过程)就可以创建堆

原理:在一个大根堆或小根堆最后一个空间插入,再向上过程(shifup),就形成了大根堆或小根堆

poll方法原理:将0下标和未下标的值交换位置,尾下标向前一位,在对0这棵树进行调整

优点:由于之前为大根堆或小根堆,交换位置后,只要0下标这棵树不是小根堆或大根堆,只需要向下调整0下标这颗大树即可就能转化为小根堆或大根堆

五.向下过程和向上过程创建堆的复杂度

六.堆排序

过程:

1. 建堆

升序:建大堆

降序:建小堆

2. 利用堆删除思想来进行排序

举例:

七.PriorityQueue的方法和使用

1.方法

2.使用


3.默认创建为小根堆的原因和如何创造出大根堆

八.Top-K问题

TOP-K问题:即求数据集合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

方法1:

public int[] smallestK(int[] arr, int k) {
        PriorityQueue<Integer> queue = new PriorityQueue<>();
        for(int i=0;i<arr.length;i++){
            queue.offer(arr[i]);
        }
        int[] ret =new int[k];
        for(int j=0;j<k;j++){
            ret[j]=queue.poll();
        }
        return ret;
    }

时间复杂度为:Nlog_{2}

class Bigheap implements Comparator<Integer>{
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2.compareTo(o1);
    }
}
class Solution {
    public int[] smallestK(int[] arr, int k) {
        int[] ret =new int[k];
        if(arr==null||k==0){
            return ret;
        }
        Bigheap bigheap =new Bigheap();
        PriorityQueue<Integer> queue = new PriorityQueue<>(bigheap);
        //klogk
        for(int i=0;i<k;i++){
            queue.offer(arr[i]);
        }
        //(N-k)logk
        for(int j=k;j<arr.length;j++){
            int max=queue.peek();
            if(max>arr[j]){
                queue.poll();
                queue.offer(arr[j]);
            }
        }
        //klogk
        for(int s =0;s<k;s++){
            ret[s]=queue.poll();
        }
        return ret;
    }
}

时间复杂度为:Nlog_{k}

同过比较第二种方法好一些。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值