71、以下哪一项不是粒子群优化算法的主要步骤?i) 评估每个粒子的适应度 ii) 更新个体和全局最优值 iii) 评估每个粒子的权重 iv) 更新每个粒子的速度和位置
iii) 评估每个粒子的权重
72、群体机器人使用的三种不同的集体运输策略是:i) 推、拉和围堵 ii) 推、拉和抓取 iii) 移动、拉和投掷 iv) 推、投掷和抓取
i) 推、拉和围堵
73、详细讨论遗传算法的所有五个阶段。
遗传算法(GA)的五个主要阶段
遗传算法(GA)主要由以下五个阶段组成:
1. 种群初始化
这是GA的第一个阶段,涉及初始种群的生成。种群是由能够为给定问题提供解决方案的个体组成的集合。传统的GA将所有遗传信息存储在染色体中,染色体通常用位阵列(由“1”和“0”组成的字符串)表示。
- 每个个体具有一些由一组变量或参数(称为基因,即单个位)定义的特征。
- 一组用位字符串表示的基因组合在一起形成染色体,从而为问题带来解决方案。
种群初始化的实现方式包括 :
- 随机初始化 :初始种群由完全随机的解决方案组成。
- 启发式初始化 :使用已知的问题启发式方法来填充初始种群。
2. 适应度函数计算(评估)
适应度函数或评估函数用于衡量一个解决方案的优劣程度。具体实现方式是:
- 为当前种群中的每个染色体分配一个适应度分数。
- 染色体的适应度值越高,表明其在解决问题方面的表现越好,也越有可能产生更好的解决方案。
3. 父代选择
根据适应度函数计算的结果,从当前种群中选择父代个体。具体原则是:
- 适应度较高的个体有更大的机会被选中作为父代。
- 被选中的父代将参与后续的交叉和变异操作,以产生下一代个体。
- 这种方式确保优良的基因有更多的机会传递到下一代。
4. 交叉
交叉是遗传算法中生成新个体的重要操作,模拟了生物的有性繁殖过程。通过交换父代染色体的部分基因来生成子代染色体。
常见的交叉方式包括 :
- 两点交叉 :在父代染色体上选择两个交叉点,交换这两个交叉点之间的基因片段,从而生成新的子代染色体。
- 均匀交叉 :对父代染色体的每一位进行独立的随机交换。
5. 变异
变异操作是为了引入新的基因信息,增加种群的多样性。具体方式是:
- 以一定的概率随机改变染色体上的某些位。
- 变异可以防止算法陷入局部最优解,使得算法能够探索更广泛的解空间。
算法流程总结
在完成上述操作后,算法会检查是否满足终止条件:
- 如果 满足终止条件 ,则停止算法并显示最优解。
- 如果 不满足终止条件 ,则重复进行适应度函数计算、父代选择、交叉和变异操作,直到满足终止条件为止。
74、解释遗传算法中任意两种变异算子
在遗传算法中,有多种变异算子,下面详细解释两种:
-
交换变异(Swap mutation) :
该算子会在染色体中精确地选择两个基因值,然后交换这两个值。例如,在一个染色体的基因序列中,原本位置A的基因值为a,位置B的基因值为b,经过交换变异后,位置A的基因值变为b,位置B的基因值变为a。 -
逆序变异(Inverse mutation) :
此算子会选择一组基因,将整个所选基因值从右到左进行反转。例如,若选择的四个基因值为(2, 3, 1, 4),经过逆序变异后会变为(4, 1, 3, 2),而其余的基因值保持不变。
75、适应度函数在遗传算法中的作用是什么?请举例说明。
适应度函数在遗传算法中具有重要作用,主要体现在以下两个方面:
- 能够快速计算
- 必须能够根据给定的解决方案定量地衡量个体的适应度值
每个问题都有其自身的适应度函数,因为它取决于给定问题的性质。
在遗传算法中,选择个体进行繁殖是基于选择具有最佳适应度质量分数的个体,而适应度质量的计算会为每个个体生成适应度分数。
示例一:二进制染色体
对于一个包含二进制信息的染色体,适应度值可以被认为是染色体中存在的 1
的数量。
例如,对于一个由七个基因组成的染色体,其中有四个 1
,那么基于该染色体的二进制信息,适应度函数将生成值 4 。
示例二:两个变量的等式问题
对于两个变量 p
和 q
,它们的和应该等于 t
,即:
p + q = t
此方程也可写成:
p + q - t = 0
在这种情况下,适应度函数可以是 |p + q - t|
的倒数,即:
Fitness Function = 1 / |p + q - t|
76、对于给定的两条染色体:染色体1:6 5 4 1 3 8 9 7;染色体2:3 7 1 9 4 8 2 5,在字符串中间进行单点交叉。
首先确定字符串长度为8,中间位置为第4个位置(索引为3)。单点交叉是在指定位置将两条染色体分割,然后交换后半部分。
- 染色体1前半部分为
6 5 4 1
,后半部分为3 8 9 7
- 染色体2前半部分为
3 7 1 9
,后半部分为4 8 2 5
交换后半部分后,得到的两条新染色体为:
- 染色体1