基于遗传算法的混合智能系统:原理、应用与硬件实现
在当今科技飞速发展的时代,基于遗传算法的混合智能系统(Genetic Algorithms Based Hybrid Intelligent Systems)展现出了巨大的潜力和广泛的应用前景。本文将深入探讨这一系统的相关原理、工业应用以及在可演化硬件中的实现。
神经网络的遗传算法优化步骤
在设计基于遗传算法的混合智能系统用于神经网络时,有一系列关键步骤。其中,步骤二是调整在步骤一中找到的层次结构的隶属函数的形状和数量。具体来说,染色体的编码方式是每个基因座对应一个神经网络输入,基因等位基因是分配给该输入的模糊单元的编号,这与Shimojima等人在1995年提出的编码方法相同。
该遗传算法的其他结构元素如下:
- 交叉算子为单点类型。
- 适应度函数形式为:$f = E + a · N$,其中$E$是神经网络输出与模糊系统模型输出之间的平方误差之和,$N$是模糊规则的数量,$\alpha$是一个系数。
可变长度基因型的优势
传统的进化算法(EA)通常具有固定长度,无论是优化固定长度位串的遗传算法,还是优化固定长度$n$维实向量的进化策略(ES)和进化规划(EP)。然而,固定长度结构在基因型(结构)进化方面能力有限,因为预先设定的基因型长度和每个基因的含义限制了其适应性。
相比之下,可变长度基因型通过进化其编码结构,不仅能够学习解决方案的参数,还能了解编码结构的主要方面,如应该有多少参数、它们的含义以及它们之间的相互关系。这种可变长度结构引入了更多的进化搜索自由度,使得系统能够更好地适应复杂问题。
在实际应用中,可变长度基因型的