生成对抗网络与强化学习:数据合成与决策优化
1. 利用EM距离训练GAN模型
在训练生成对抗网络(GAN)时,可以使用EM距离来衡量真实样本分布 (P_r) 和生成样本分布 (P_g) 之间的差异。不过,计算EM距离本身是一个优化问题,计算复杂度较高,特别是在GAN训练的每一次迭代中重复计算时。不过,借助Kantorovich - Rubinstein对偶定理,可以简化EM距离的计算,公式如下:
[W(P_r, P_g) = \sup_{|f| L \leq 1} E {u \in P_r}[f(u)] - E_{v \in P_g}[f(v)]]
这里的上确界是对所有1 - Lipschitz连续函数 (f) (即 (|f|_L \leq 1) )取的。
1.1 1 - Lipschitz连续性
对于函数 (f) ,如果满足 (|f(x_1) - f(x_2)| \leq |x_1 - x_2|) ,则称其具有1 - Lipschitz连续性。更一般地,若函数 (f: R \to R) 满足 (|f(x_1) - f(x_2)| \leq K|x_1 - x_2|) ,则称其为K - Lipschitz连续函数。
1.2 基于Wasserstein距离训练GAN的损失函数
为了使用Wasserstein距离训练GAN,需要定义判别器 (D) 和生成器 (G) 的损失函数:
- 判别器的真实样本损失:(L_D^{real} = -\frac{1}{N} \sum_{i} D(x_i))
- 判别器的生成样本损失:(L_D^{fake} = \frac{1}{N} \sum