ReKep: Spatio-Temporal Reasoning of Relational Keypoint Constraints for Robotic Manipulation

发表时间:CORL 2024 (Best paper)

论文链接:https://readpaper.com/pdf-annotate/note?pdfId=2476642985732261376&noteId=2480092969164874752

作者单位:Stanford University(Li Fei-Fei)

Motivation将机器人操作任务表示为关联机器人和环境的约束,是编码所需机器人行为的一种有前途的方法。然而,目前尚不清楚如何制定约束,使它们 1) 适用于不同的任务,2) 无需手动标记,以及 3) 由现成的求解器可实时生成机器人动作。

解决方法:具体来说,ReKep 表示为 Python 函数,将环境中的一组 3D 关键点映射到数值成本。我们证明了通过将操作任务表示为一系列关系关键点约束,我们可以使用分层优化过程来解决机器人动作(由 SE(3) 中的末端执行器姿势序列表示),并以实时频率感知-动作循环。

在机器人学中,SE(3) 常用于描述机器人的末端执行器(如机械臂的末端)的运动。末端执行器的姿势序列可以由一系列 SE(3) 变换矩阵表示,这些变换矩阵描述了末端执行器在不同时间点的位置和方向。(即SE3是末端位姿)

我们的贡献总结如下:

1)我们将操作任务制定为具有关系关键点约束的分层优化问题

2)我们设计了一个管道,使用大型视觉模型和视觉语言模型自动指定关键点和约束

3)我们在两个真实机器人平台上展示了系统实现,该平台将语言指令和 RGB-D 观察作为输入,并为各种操作任务生成多阶段、野外、双手动和反应行为,所有这些都没有特定于任务的数据或环境模型。

实现方式:结构如下:

输入图像是RGB-D,Dinov2 用于提出场景中细粒度有意义区域的关键点候选对象将覆盖关键点和指令的图像输入GPT-4o,生成一系列ReKep约束作为python程序,指定任务不同阶段的关键点之间的期望关系(C(i)子目标),以及对过渡行为的任何要求(Cipath)。最后,约束优化求解器用于在 SE(3) 中获得密集的末端执行器动作序列,受生成的约束。

实验:各种各样真实场景的任务(包括单臂和双臂,包括具有常识知识的野外规范、具有时空依赖性的多阶段任务、与几何意识的双手动协调以及与人类和干扰下的反应性)。

结论展示了 ReKep 的独特优势,因为它可以由大型视觉模型和视觉语言模型自动合成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ming_Chens

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值