Flink的reduce操作是一种聚合操作,用于对数据进行分组或不分组的聚合计算,最终将数据聚合成一个元素。这个操作可以在分组的dataset上使用,也可以在不分组的dataset上使用。在分组的dataset上使用时,reduce操作应用用户定义的reduce函数将每个组减少为单个元素。对于每组输入元素,reduce函数连续地将元素对组合成一个元素,直到每个组只剩下一个元素。对于ReduceFunction,返回对象的key字段应与输入值匹配,这是因为reduce是可隐式组合的,并且从combine运算符发出的对象在传递给reduce运算符时再次按key分组。
具体来说,reduce操作适用于需要对数据进行聚合的场景,比如统计、计数等。例如,在日志分析中,可以使用reduce操作统计某个字段(如IP地址)的出现次数,或者统计某个单词在文本中出现的次数等。这种操作不仅限于分组数据,也可以直接应用于整个数据集,实现对整个数据集的聚合计算。
上图展示了
reduce
算子的原理:reduce
在按照同一个Key分组的数据流上生效,它接受两个输入,生成一个输出,即两两合一地进行汇总操作,生成一个同类型的新元素。
reduce需要针对分组或者一个window(窗口)来执行,也就是分别对应于keyBy、window/timeWindow 处理后的数据,根据ReduceFunction将元素与上一个reduce后的结果合并,产出合并之后的结果
与简单聚合类似,reduce()操作也会将 KeyedStream 转换为 DataStream。它不会改变流的 元素数据类型,所以输出类型和输入类型是一样的。
调用 KeyedStream 的 reduce()方法时,需要传入一个参数,实现 ReduceFunction 接口
实例1:相邻元素求和,定义tupple2类型