Hadoop(十二) MapReduce WritableComparable 排序

WritableComparable介绍

在前面的几个列子的结构文件中我们可以看到排序结果默认按照英文字母进行排序

这是因为在MapReduce中,会自动的对放在键的位置上的元素进行排序,因此要求放在键的位置上的元素对应的类必须实现Comparable。默认排序是按照字典顺序排序,且实现该排序的方法是快速排序

 对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。
  对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。

排序分类
(1)部分排序
  MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序。
(2)全排序
  最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。
(3)辅助排序:(GroupingComparator分组)
  在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到同一个reduce方法时,可以采用分组排序。
(4)二次排序
  在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

排序代码实现

考虑到MapReduce要求被传输的数据能够被序列化,因此放在键的位置上的元素对应的类要考虑实现 - WritableComparable接口,简单点说就是bean 对象做为 key 传输,需要实现 WritableComparable 接口重写 compareTo 方法,就可以实现排序。

案例按照,第三个字段进行排序,数据peopleinfoorder.txt如下

1880349000110,4321,7000
1880349000111,4121,6000
1880349000112,4021,3000

代码

package order;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

// 用于完成Map阶段
// 再MapReduce中,要求被处理的数据能够被序列化
// MApReduce提供了一套单独的序列化机制
// KEYIN-输入的键的类型。如果不指定,那么默认情况下,表示行的字节偏移量
// VALUEIN-输入值得类型。如果不指定,那么默认情况下,表示的读取到的一行数据
// KEYOUT-输出的键的类型。当前案例中,输出的键表示的是PeopleInfo对象
// VALUEOUT-输出的值的类型。当前案例,输出的值为null,因为KEYOUT里边已经包含了
public class FlowMapper extends Mapper<LongWritable, Text, PeopleInfo, NullWritable> {

    // 覆盖map方法,将处理逻辑写到这个方法中
    // key:键。表示的是行的字节偏移量
    // value:值。表示读取到的一行数据
    // context:配置参数

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] array = value.toString().split(",");
        PeopleInfo p = new PeopleInfo();
        p.setPhone(array[0]);
        p.setUpFlow(Integer.parseInt(array[1]));
        p.setDownFlow(Integer.parseInt(array[2]));
        context.write(p, NullWritable.get());
    }
}

package order;

impo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛定谔的猫1982

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值