技术背景介绍
目前,生成式人工智能(Generative AI)已经在许多场景中得到了广泛应用,尤其是在问答系统、摘要生成和内容生成方面。然而,如何优化大语言模型(LLMs)的性能,使之能够在具体任务场景下生成高质量内容,仍然是一个挑战。DSPy 是一个创新的框架,通过自动编译器为程序的声明式步骤生成高质量提示,从而提升 LLMS 的任务执行能力。这篇文章将演示如何结合 DSPy 和 LangChain 来优化基于检索-生成(RAG)管道的推文生成系统。
核心原理解析
DSPy 的主要特点在于:
- 自动编译器(Automatic Compiler):通过追踪程序执行步骤,为 LLM 自动生成优化的提示(Prompt)。
- 支持小模型微调:除了优化提示,还能为小型模型执行自动微调。
- 与 LangChain 集成:支持基于 LangChain 表达式语言(LCEL)的模块封装。
在本文中,我们的目标是:
- 构建一个 RAG 管道,用于从上下文中生成有趣且准确的推文。
- 使用 DSPy 的优化功能,以提升模型的生成质量。
代码实现演示
1. 安装依赖
首先,安装必要的 Python 库:
!pip install -U dspy-ai
!pip install -U openai jinja2
!pip install -U langchain langchain-community langchain-openai langchain-core
2. 配置 OpenAI API 密钥
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getp