使用 DSPy 和 LangChain 构建优化的生成式信息抽取系统

技术背景介绍

目前,生成式人工智能(Generative AI)已经在许多场景中得到了广泛应用,尤其是在问答系统、摘要生成和内容生成方面。然而,如何优化大语言模型(LLMs)的性能,使之能够在具体任务场景下生成高质量内容,仍然是一个挑战。DSPy 是一个创新的框架,通过自动编译器为程序的声明式步骤生成高质量提示,从而提升 LLMS 的任务执行能力。这篇文章将演示如何结合 DSPy 和 LangChain 来优化基于检索-生成(RAG)管道的推文生成系统。

核心原理解析

DSPy 的主要特点在于:

  1. 自动编译器(Automatic Compiler):通过追踪程序执行步骤,为 LLM 自动生成优化的提示(Prompt)。
  2. 支持小模型微调:除了优化提示,还能为小型模型执行自动微调。
  3. 与 LangChain 集成:支持基于 LangChain 表达式语言(LCEL)的模块封装。

在本文中,我们的目标是:

  • 构建一个 RAG 管道,用于从上下文中生成有趣且准确的推文。
  • 使用 DSPy 的优化功能,以提升模型的生成质量。

代码实现演示

1. 安装依赖

首先,安装必要的 Python 库:

!pip install -U dspy-ai
!pip install -U openai jinja2
!pip install -U langchain langchain-community langchain-openai langchain-core
2. 配置 OpenAI API 密钥
import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值