在今天的AI技术应用中,检索增强生成(RAG)通过结合检索和生成技术极大地提高了问答系统的效果。本文将带您了解如何实现一个能够在不同领域特定的检索器之间进行路由的QA应用。如果您需要查询PubMed、ArXiv、Wikipedia和Kay AI(用于SEC文件)等不同数据源,这篇文章将为您提供一个实用的实现方案。
技术背景介绍
RAG(Retrieval-Augmented Generation)是一种结合搜索与生成的AI技术架构。传统的问答系统在面对大量未标注的文本时常常力不从心,而RAG通过在生成答案前检索相关上下文信息,大大提高了问答系统的准确性。
核心原理解析
RAG的核心思路是将用户问题路由到最相关的信息源,检索出相关文档或数据,然后通过生成模型输出答案。此次实现通过配置多个索引(或数据源),并依据问题的特定领域自动选择合适的索引进行处理。
代码实现演示
下面的代码演示了如何设置一个可以在不同索引之间进行路由的RAG系统:
import os
from rag_multi_index_router import chain as rag_multi_index_router_chain
from langserve.client import RemoteRunnable
from langserve import add_routes
from fastapi import FastAPI
app = FastAPI()
# Configure your API keys and environment variables
os.environ['KAY_API_KEY'] = '<YOUR_API_KEY>'
os.environ['LANGCHAIN_API_KEY'] = '<your-api-key>'
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
os.environ['LANGCHAIN_PROJECT'] = 'my-langchain-project'
# Add routes to the FastAPI application
add_routes(app, rag_multi_index_router_chain, path="/rag-multi-index-router")
# Create a RemoteRunnable for testing the RAG chain
runnable = RemoteRunnable("http://localhost:8000/rag-multi-index-router")
# Example usage of the RemoteRunnable
question = "What are the latest developments in AI research?"
response = runnable.run({"question": question})
print(response)
环境设置
-
安装LangChain CLI:确保您安装了LangChain CLI工具:
pip install -U langchain-cli
-
创建LangChain项目:如果您是从头开始,可以创建一个新的LangChain项目:
langchain app new my-app --package rag-multi-index-router
-
启动服务:在项目目录下启动LangServe实例:
langchain serve
这将在本地启动一个FastAPI应用,您可以通过
http://localhost:8000
访问。
应用场景分析
这种多索引路由的RAG架构尤其适用于需要访问不同领域知识库的复杂问答系统,例如医学研究、法律文件检索和科学论文搜索等场景。
实践建议
- API密钥管理:确保在生产环境中安全管理您的API密钥。
- 路由策略优化:根据应用需求调整路由策略,提高检索效率。
- 性能监控和调试:配置LangSmith等工具进行持续的性能监控和应用调试。
如果遇到问题欢迎在评论区交流。
—END—