使用RAG-Vectara-Multiquery实现多查询问答系统

在自然语言处理领域,检索增强生成(RAG)模型是实现问答系统的强大工具。今天,我们将探索如何使用 RAG-Vectara-Multiquery 模板,通过Vectara API服务实现多查询问答系统。

技术背景介绍

RAG(Retrieval-Augmented Generation)结合了文本检索和文本生成两个阶段,可以在大型语料库中找到相关文档,并基于检索结果生成回答。Vectara是一种支持自然语言搜索的服务,通过其增强的多查询能力,可以提高RAG模型的检索效果。

核心原理解析

RAG模型的工作流程通常包括以下几个步骤:

  1. 检索阶段:从既定语料库中检索与输入查询相关的文档。
  2. 生成阶段:使用生成模型(如GPT-3)基于检索到的文档生成答案。

使用Vectara的多查询功能可对查询进行扩展和增强,从而提高检索的相关性和回答的准确性。

代码实现演示

下面是一个完整的代码示例,展示了如何设置RAG-Vectara-Multiquery来处理多查询:

import os
from langserve.client import RemoteRunnable

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值