在自然语言处理领域,检索增强生成(RAG)模型是实现问答系统的强大工具。今天,我们将探索如何使用 RAG-Vectara-Multiquery 模板,通过Vectara API服务实现多查询问答系统。
技术背景介绍
RAG(Retrieval-Augmented Generation)结合了文本检索和文本生成两个阶段,可以在大型语料库中找到相关文档,并基于检索结果生成回答。Vectara是一种支持自然语言搜索的服务,通过其增强的多查询能力,可以提高RAG模型的检索效果。
核心原理解析
RAG模型的工作流程通常包括以下几个步骤:
- 检索阶段:从既定语料库中检索与输入查询相关的文档。
- 生成阶段:使用生成模型(如GPT-3)基于检索到的文档生成答案。
使用Vectara的多查询功能可对查询进行扩展和增强,从而提高检索的相关性和回答的准确性。
代码实现演示
下面是一个完整的代码示例,展示了如何设置RAG-Vectara-Multiquery来处理多查询:
import os
from langserve.client import RemoteRunnable