- 博客(869)
- 收藏
- 关注
原创 Matrix Theory study notes[4]
摘要 线性组合与线性相关性用于描述向量组中各向量间的线性关系。一组向量若存在不全为零的标量使其线性组合为零向量,则称为线性相关;否则为线性无关。可通过
2025-07-21 08:14:39
277
原创 Twisted study notes[2]
本文介绍了使用Twisted框架实现持久化数据存储的方法。通过在Factory子类中保存数据(如示例中的numProtocols变量),可实现跨连接共享数据。文章详细说明了连接建立(connectionMade)、数据接收(
2025-07-20 23:21:15
259
原创 C study notes[1]
C语言简介 C语言是一种简洁高效的编程语言,其ANSI C标准于1983年制定,后续发展出C99和C11标准。C语言具有跨平台特性,源代码可编译为在Windows、Linux等系统运行的可执行文件。基础输出使用printf函数,支持多种格式说明符(如%d、%f等)。程序执行从main()函数开始,变量需先声明后使用,支持整型、
2025-07-19 22:30:49
690
原创 Matrix Theory study notes[3]
本文定义了线性空间的概念:设V是非空向量集合,K是数域,若V满足向量加法(交换律、结合律、零元、负元)和数乘运算(分配律、
2025-07-18 20:24:40
530
原创 python study notes[1]
Python内置aiter()函数用于异步编程,通过调用对象的__aiter__()方法获取异步迭代器。与同步迭代器不同,异步迭代器通过__anext__()返回可等待对象(通常为协程),需要使用await获取
2025-07-16 10:06:27
319
原创 Twisted study notes[1]
Twisted网络框架使用Protocol类处理协议,每个连接创建临时实例,持久配置保存在Factory类中。示例代码展示了继承Protocol实现连接处理和数据回显,Factory类管理共享状态和协议实例创建。Protocol实例在连接结束后销毁,而Factory维护跨连接的配置信息。
2025-07-15 23:41:38
508
原创 Dask study notes[3]
摘要 Dask DataFrame 是提升 Pandas 处理大数据效率的工具,通过并行化操作解决单机内存限制问题。它模拟 Pandas API,将数据分块为多个 Pandas DataFrame
2025-07-14 12:29:57
325
原创 sklearn study notes[2]
摘要:本文介绍了奇异矩阵(Singular Matrix)的特性,包括行列式为零、不可逆、存在线性相关的行/列以及有零特征值等判定条件。通过Python代码示例展示了如何使用scikit-learn的train_test_split分割数据集,
2025-07-14 09:29:21
441
原创 sklearn study notes[1]
线性回归模型通过最小化观测值与预测值之间的残差平方和来拟合数据。该模型包含截距项w0和系数w,可通过sklearn
2025-07-13 23:20:11
377
原创 Dask study notes[2]
本文演示了如何用Dask将大型数组分块处理。示例使用numpy创建100×900的数组,通过dask.array将其分块为20×30的小块。展示了分块后的数据结构、访问特定块的方法(如blocks[1,3
2025-07-13 10:33:04
225
原创 TensorFlow2 study notes[2]
TensorFlow的ForwardAccumulator实现了前向模式自动微分,用于计算雅可比-向量乘积(JVP)。通过指定待跟踪变量(primals)和
2025-07-12 19:27:26
324
原创 TensorFlow2 study notes[1]
本文介绍了TensorFlow音频处理的基本操作。首先说明如何安装TensorFlow及相关库(torch、torchvision、torchaudio)。然后详细演示了音频解码功能(tf.audio.decode_wav),将16位P
2025-07-11 23:52:21
344
原创 JAX study notes[16]
JAX utilizes PyTrees, an abstract structure, to efficiently handle collections of arrays in
2025-07-11 15:51:17
453
原创 JAX study notes[15]
本文介绍了集合的对称差集和上下极限的计算方法。对称差集定义为仅属于A或仅属于B的元素集合,通过JAX实现为两个集合差集的并集。上下极限部分展示了
2025-07-06 23:28:13
840
原创 JAX study notes[13]
摘要:本文介绍了等价关系与群论的基本概念。等价关系R需满足自反性、对称性和传递性,其等价类[a]定义为与a相关的元素集合,所有等价类构成商集A/∼。群
2025-07-05 13:43:04
873
原创 Dask study notes[1]
摘要: Dask通过分块算法处理大型数组,调用NumPy ndarray API,其准确性依赖于Dask图。用户可按需导入Dask组件(如dask.array、dask.dataframe),并行计算需使用dask.distributed,机器学习任务可引入
2025-07-03 13:59:45
908
原创 JAX study notes[12]
JAX支持单程序多数据(SPMD)并行计算,允许将数据分散到不同设备(如GPU、CPU、TPU)上处理,无需强制所有数据均匀分布。其核心优化工具jax.jit通过即时编译提升执行效率,将函数分解为基本计算单元进行加速。该方法基于JAX官方文档实现,适用于异构计算环境的高性能需求。
2025-07-03 07:47:31
233
原创 JAX study notes[11]
本文演示了使用JAX库进行矩阵运算的基本操作,包括矩阵加法(a + b)、元素乘法(a * b)、点积(jnp.dot或@运算符)、转置(a.T
2025-06-30 23:05:39
349
原创 JAX study notes[10]
本文介绍了使用JAX创建和操作对角矩阵的方法。通过jnp.diag函数可以将一维数组转换为对角矩阵,或从对角矩阵提取对角线元素。演示了使用jnp.eye
2025-06-30 21:21:46
538
原创 JAX study notes[9]
本文介绍了Python编程基础,包括:1)单行注释写法;2)变量定义与数据类型(整数、浮点、字符串);3)主要数据结构(列表、元组、集合、字典);4)控制流程(if语句
2025-06-30 13:17:31
370
原创 JAX study notes[8]
JAX的静态类型检查功能逐渐成为Python编码标准的重要组成部分。jax.Array是表示数组的基类,在Python项目中可通过三个层级进行类型注释:1)作为文档说明;2)支持IDE智能补全;3)用于静态类型检查。JAX开发需兼容pytype和mypy两种类型检查工具,同时面临数组鸭子类型、装饰器转换、数组
2025-06-29 16:04:46
328
原创 Dask心得与笔记【2】
本文展示了使用Dask、JAX和TensorFlow Probability进行分布式计算的示例。Dask通过延迟计算和分块处理大数据,如数组切片和聚合操作;JAX利用pmap实现多设备并行;TensorFlow Probability则结合分布式策略进行概率计算。这些工具都支持懒惰计算模式,仅在实际需要结果时才执行计算,适用于大规模数据处理和并行计算场景。文中代码示例涵盖了基本操作、函数调用及分布式环境下的使用方法。
2025-06-28 16:04:04
400
原创 Dask心得与笔记【1】
Dask是一个分布式Python库,用于并行和分布式计算,简单易用且高效。它通过任务图在单机或多节点上执行计算,支持pandas和numpy等数据结构。安装简单,使用pip install "dask[complete]"即可安装完整的Dask及其依赖。Dask提供多种接口,如dask.dataframe和dask.array,便于数据处理和大规模算法优化。
2025-06-28 08:42:31
306
原创 JAX study notes[7]
摘要:JAX的numpy模块提供了linspace和arange函数来生成等间隔数列。linspace根据指定区间[start, stop]和数量num均匀生成数组
2025-06-27 23:05:49
531
原创 JAX study notes[6]
本文探讨了如何计算三维高斯随机向量在给定部分变量条件下的条件概率密度。以一个三维联合高斯分布为例(均值向量μ和协方差矩阵Σ),通过Python代码演示了计算X在Y=y和W=w条件下的分布。关键步骤包括:分割协方差矩阵为块矩阵,计算条件均值μ_X|YW = μ_X + Σ_XYΣ_YY⁻¹(y-μ_Y)和条件方差Σ_X|YW = Σ_XX - Σ_XYΣ_YY⁻¹Σ_YX。结果显示,条件分布仍为高斯分布,其参数可通过协方差矩阵的代数运算获得。
2025-06-27 15:02:05
368
原创 完全有界集
摘要:完全有界集(预紧集)是度量空间中对任意ε>0存在有限ε网覆盖的集合。它与有界性、紧性和列紧性密切相关:完全有界集必有界,但逆命题在无穷维空间不成立;在完备空间中,紧集等价于闭且完全有界集。完全有界性保证序列存在柯西子列,而
2025-06-26 23:11:37
34
原创 可数紧集与可数紧空间
本文介绍了拓扑学中的可数紧性概念。可数紧空间要求每个可数开覆盖存在有限子覆盖,是比紧性更弱的性质。文章给出了可数紧集的定义、等价刻画(如序列紧性和Bolzano-Weierstrass性质),并分析了其与紧性的关系(紧空间必可数紧,但逆命题不成立)。通过典型例子(如[0, ω₁)区间)说明了两者的区别,总结了可数紧性的重要性质(闭子集保持性、连续映射不保持性等),最后用表格对比了紧性、可数紧性、序列紧性和Lindelöf性质的关系。
2025-06-26 22:33:32
62
原创 JAX study notes[5]
本文介绍了随机向量的分布函数与密度函数概念,并通过Python的JAX库展示了联合密度与边缘密度的计算方法。首先,密度函数定义为随机向量X的偏导数。随后以三维高斯分布为例,演示了如何用JAX计算联合概率密度,并验证协方差矩阵的对称性和正定性。文章
2025-06-25 13:59:29
416
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人