Matrix Theory study notes[6]

transition matrix

  1. a basis of linear space V k V^k Vk,which is x 1 , x 2 , . . . x k x_1,x_2,...x_k x1,x2,...xk,can be called as a coordinate system.let vector v ∈ V k v \in V^k vVk and it can be linear expressed on this basis as v = a 1 x 1 + a 2 x 2 + . . . + a k x k v=a_1x_1+a_2x_2+...+a_kx_k v=a1x1+a2x2+...+akxk,the a 1 , a 2 , . . . . , a k a_1,a_2,....,a_k a1,a2,....,ak is coordinate in this coordinate system denoted by ( a 1 , a 2 , . . . , a k ) T (a_1,a_2,...,a_k)^T (a1,a2,...,ak)T.
  2. the various coordinate systems for the same vector are different usually because of non-uniqueness of basis of a linear space. for the first basis which is x 1 , x 2 , . . . x k x_1,x_2,...x_k x1,x2,...xk ,the coordinate is ( a 1 , a 2 , . . . , a k ) T (a_1,a_2,...,a_k)^T (a1,a2,...,ak)T and there are the second basis x 1 ′ , x 2 ′ , . . . x k ′ x_1',x_2',...x_k' x1,x2,...xk to coorespond another coordinate ( a 1 ′ , a 2 ′ , . . . , a k ′ ) T (a_1',a_2',...,a_k')^T (a1,a2,...,ak)T,also can be explain that v = a 1 x 1 + a 2 x 2 + . . . + a k x k = a 1 ′ x 1 ′ + a 2 ′ x 2 ′ + . . . + a k ′ x k ′ v=a_1x_1+a_2x_2+...+a_kx_k=a_1'x_1'+a_2'x_2'+...+a_k'x_k' v=a1x1+a2x2+...+akxk=a1x1+a2x2+...+akxk.
  3. let v ∈ V k v \in V^k vVk and x 1 , x 2 , . . . x k x_1,x_2,...x_k x1,x2,...xk is a basis of linear space,then v v v can uniquely be separated into the linear combination that v = a 1 x 1 + a 2 x 2 + . . . + a k x k v=a_1x_1+a_2x_2+...+a_kx_k v=a1x1+a2x2+...+akxk.
  4. transition matrix is useful for the coversion from a basis of linear space to another basis in the same linear space.let X = x 1 , x 2 , . . . , x k X=x_1,x_2,...,x_k X=x1,x2,...,xk is the old basis of V k V^k Vk and X ′ = x 1 ′ , x 2 ′ , . . . , x k ′ X'=x_1',x_2',...,x_k' X=x1,x2,...,xk is the new basis of that,the transtion matrix P P P is n × n n \times n n×n matrix which column vectors are coordinate representation of vectors in the new basis under old basis X X X.
    x j ′ = ∑ i = 1 n p i j x i ( j = 1 , 2 , … , n ) x'_j = \sum_{i=1}^n p_{ij} x_i \quad (j=1,2,\dots,n) xj=i=1npijxi(j=1,2,,n)
    that matrix form is as follows.
    P = [ [ x 1 ′ ] X [ x 2 ′ ] X ⋯ [ x n ′ ] X ] x 1 ′ = p 11 x 1 + p 21 x 2 + . . . + p n 1 x n x 2 ′ = p 12 x 1 + p 22 x 2 + . . . + p n 2 x n . . . . x n ′ = p 1 n x 1 + p 2 n x 2 + . . . + p n n x n P = \begin{bmatrix} [x'_1]_{X} & [x'_2]_{X} & \cdots & [x'_n]_{X} \end{bmatrix}\\ x_1'=p_{11}x_1+p_{21}x_2+...+p_{n1}x_n\\ x_2'=p_{12}x_1+p_{22}x_2+...+p_{n2}x_n\\ ....\\ x_n'=p_{1n}x_1+p_{2n}x_2+...+p_{nn}x_n\\ P=[[x1]X[x2]X[xn]X]x1=p11x1+p21x2+...+pn1xnx2=p12x1+p22x2+...+pn2xn....xn=p1nx1+p2nx2+...+pnnxn
    X ′ = X P X'=XP X=XP
    P = [ p 11 p 12 . . . p 1 n . . . . . . . . . . . . p n 1 p n 2 . . . p n n ] P=\begin{bmatrix} p_{11} & p_{12} & ... &p_{1n}\\ ...&...&...&...\\ p_{n1} & p_{n2} & ... &p_{nn}\\ \end{bmatrix} P= p11...pn1p12...pn2.........p1n...pnn
  • if the vector y y y 's coordinate under the basis X ′ X' X is [ y ] X ′ [y]_{X'} [y]X,then its coordinate under the basis X X X is that [ y ] X = P [ y ] X ′ [y]_{X} = P [y]_{X'} [y]X=P[y]X

  • inverse transformation:the transition matrix from X X X to X ′ X' X is [ y ] X ′ = P − 1 [ y ] X [y]_{X'} = P^{-1}[y]_{X} [y]X=P1[y]X

  • the transition matrix certainly is an inverse matrx.

  • if the transition maxtrix P can help to fulfill the conversion from basis X X X to basis X ′ X' X and the P ′ P' P which is a transition maxtrix can transfer from the basis X ′ X' X to basis X ′ ′ X'' X′′,then P P ′ PP' PP helps the basis X X X convert to the basis X ′ ′ X'' X′′

  1. the matrix express of linear transformation,which is transformation from the abstract linear mapping to concrete number matrix, can define completely all linear transformation through basical vector’s transformation.
  • let T : V → W T: V \to W T:VW is the linear transformation as follows.
    • V V V is n n n dimenstion vector space,its basis is B V = { v 1 , … , v n } B_V = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} BV={v1,,vn}
    • W W W is m m m dimenstion vector space,its basis is B W = { w 1 , … , w m } B_W = \{\mathbf{w}_1, \dots, \mathbf{w}_m\} BW={w1,,wm}
  • in the first place, T T T has an effect on each basis vector v j \mathbf{v}_j vj to generate the T ( v j ) T(\mathbf{v}_j) T(vj).in the second place,the T ( v j ) T(\mathbf{v}_j) T(vj) is expressed as the linear combination of basis B W B_W BW of W W W.
    T ( v j ) = a 1 j w 1 + a 2 j w 2 + ⋯ + a m j w m T(\mathbf{v}_j) = a_{1j} \mathbf{w}_1 + a_{2j} \mathbf{w}_2 + \cdots + a_{mj} \mathbf{w}_m T(vj)=a1jw1+a2jw2++amjwm
    all coefficient a i j a_{ij} aij arrange by columns to form matrix A A A.
    A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} A= a11a21am1a12a22am2a1na2namn
    • the j-th column:the coordinate of T ( v j ) T(\mathbf{v}_j) T(vj) under the basis B W B_W BW .

    • a vector v = c 1 v 1 + ⋯ + c n v n \mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n v=c1v1++cnvn will transform to the following form because of the linearity of T T T.
      T ( v ) = c 1 T ( v 1 ) + ⋯ + c n T ( v n ) T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + \cdots + c_n T(\mathbf{v}_n) T(v)=c1T(v1)++cnT(vn)

      • input coordinate: [ v ] B V = [ c 1 ⋮ c n ] [\mathbf{v}]_{B_V} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} [v]BV= c1cn
      • output coordinate: [ T ( v ) ] B W = A [ v ] B V [T(\mathbf{v})]_{B_W} = A [\mathbf{v}]_{B_V} [T(v)]BW=A[v]BV
  1. the matrix express of linear transformation bases on the basis,the matrix express can vary with the basis,although those various matrix express illustrate the same linear transformatin,that is to say,those matrix express certainly have Matrix similarity.
  • T : V → V T: V \to V T:VV is a linear transformation.
    • B 1 = { v 1 , … , v n } B_1 = \{ \mathbf{v}_1, \dots, \mathbf{v}_n \} B1={v1,,vn} is a set of bases,cooresponding to the matrix express A A A.
    • B 2 = { w 1 , … , w n } B_2 = \{ \mathbf{w}_1, \dots, \mathbf{w}_n \} B2={w1,,wn}is another group of bases,cooresponding to the matrix express B B B.
  • the transformation matrix from B 1 B_1 B1 to B 2 B_2 B2 satisfies the following requirement.
    w j = ∑ i = 1 n p i j v i \mathbf{w}_j = \sum_{i=1}^n p_{ij} \mathbf{v}_i wj=i=1npijvi
    that is as follows.
    [ w j ] B 1 = P ⋅ [ w j ] B 2 [\mathbf{w}_j]_{B_1} = P \cdot [\mathbf{w}_j]_{B_2} [wj]B1=P[wj]B2
    under the basis B 1 B_1 B1,the matrix express of T T T is A A A
    [ T ( v ) ] B 1 = A [ v ] B 1 [T(\mathbf{v})]_{B_1} = A [\mathbf{v}]_{B_1} [T(v)]B1=A[v]B1
    under the basis B 2 B_2 B2,the matrix express of T T T is B B B
    [ T ( v ) ] B 2 = B [ v ] B 2 [T(\mathbf{v})]_{B_2} = B [\mathbf{v}]_{B_2} [T(v)]B2=B[v]B2
  • to prove the similar relation.

[ T ( v ) ] B 1 = P [ T ( v ) ] B 2 = P B [ v ] B 2 [T(\mathbf{v})]_{B_1} = P [T(\mathbf{v})]_{B_2} = P B [\mathbf{v}]_{B_2} [T(v)]B1=P[T(v)]B2=PB[v]B2
[ v ] B 1 = P [ v ] B 2 [\mathbf{v}]_{B_1} = P [\mathbf{v}]_{B_2} [v]B1=P[v]B2,so [ T ( v ) ] B 1 = A [ v ] B 1 = A P [ v ] B 2 [T(\mathbf{v})]_{B_1} = A [\mathbf{v}]_{B_1} = A P [\mathbf{v}]_{B_2} [T(v)]B1=A[v]B1=AP[v]B2
P B = A P ⇒ B = P − 1 A P P B = A P \quad \Rightarrow \quad B = P^{-1} A P PB=APB=P1AP
we continue to exlain that with an example.

let T : R 2 → R 2 T: \mathbb{R}^2 \to \mathbb{R}^2 T:R2R2, T ( x , y ) = ( 2 x + y , x + 2 y ) T(x, y) = (2x + y, x + 2y) T(x,y)=(2x+y,x+2y)
the matrix under the standard basis B 1 = { e 1 , e 2 } B_1 = \{ \mathbf{e}_1, \mathbf{e}_2 \} B1={e1,e2}

T ( e 1 ) = ( 2 , 1 ) , T ( e 2 ) = ( 1 , 2 ) T(\mathbf{e}_1) = (2, 1), \quad T(\mathbf{e}_2) = (1, 2) T(e1)=(2,1),T(e2)=(1,2)
so
A = [ 2 1 1 2 ] A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} A=[2112]

the matrix under the new basis B 2 = { ( 1 , 1 ) , ( 1 , − 1 ) } B_2 = \{ (1,1), (1,-1) \} B2={(1,1),(1,1)}

  • transformation matrix P P P
    ( 1 , 1 ) = 1 ⋅ e 1 + 1 ⋅ e 2 ( 1 , − 1 ) = 1 ⋅ e 1 − 1 ⋅ e 2 ⇒ P = [ 1 1 1 − 1 ] (1,1) = 1 \cdot \mathbf{e}_1 + 1 \cdot \mathbf{e}_2 \\ (1,-1) = 1 \cdot \mathbf{e}_1 - 1 \cdot \mathbf{e}_2 \\ \Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} (1,1)=1e1+1e2(1,1)=1e11e2P=[1111]
  • B = P − 1 A P B = P^{-1} A P B=P1AP
    P − 1 = 1 2 [ 1 1 1 − 1 ] P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} P1=21[1111]
    B = 1 2 [ 1 1 1 − 1 ] [ 2 1 1 2 ] [ 1 1 1 − 1 ] = [ 3 0 0 1 ] B = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} B=21[1111][2112][1111]=[3001]
  1. to define a linear trasformation that T : R 2 → R 2 T: \mathbb{R}^2 \to \mathbb{R}^2 T:R2R2,the standard basis is e 1 = ( 1 0 ) , e 2 = ( 0 1 ) \mathbf{e}_1 = \begin{pmatrix}1\\0\end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix}0\\1\end{pmatrix} e1=(10),e2=(01).

let T ( x , y ) = ( 2 x + y , x − 3 y ) T(x,y) = (2x + y, x - 3y) T(x,y)=(2x+y,x3y)
[ T ] = ( 2 1 1 − 3 ) [T] = \begin{pmatrix} 2 & 1 \\ 1 & -3 \\ \end{pmatrix} [T]=(2113)

let v = ( x y ) = x e 1 + y e 2 \mathbf{v} = \begin{pmatrix}x\\y\end{pmatrix} = x\mathbf{e}_1 + y\mathbf{e}_2 v=(xy)=xe1+ye2,so
T ( v ) = x T ( e 1 ) + y T ( e 2 ) = x ( 2 1 ) + y ( 1 − 3 ) = ( 2 x + y x − 3 y ) T(\mathbf{v}) = xT(\mathbf{e}_1) + yT(\mathbf{e}_2) = x\begin{pmatrix}2\\1\end{pmatrix} + y\begin{pmatrix}1\\-3\end{pmatrix} = \begin{pmatrix}2x + y \\ x - 3y\end{pmatrix} T(v)=xT(e1)+yT(e2)=x(21)+y(13)=(2x+yx3y)
that result is also computed with the following matrix multiplicatoin.
[ T ] v = ( 2 1 1 − 3 ) ( x y ) = ( 2 x + y x − 3 y ) [T]\mathbf{v} = \begin{pmatrix}2 & 1 \\1 & -3\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}2x + y \\ x - 3y\end{pmatrix} [T]v=(2113)(xy)=(2x+yx3y)

references

  1. deepseek
  2. 《矩阵论》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海边的水水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值