video analysis

本文介绍了视频分析领域的多个数据集,如MSR-VTT、YouTube2Text和MPII-MD,以及相关的视频生成、目标跟踪、视频字幕等技术。重点提及CVPR、ECCV和ICCV等会议的最新研究论文,探讨了视频理解和问答的挑战与解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dataset

  • MSR-VTT dataset: 该数据集为ACM Multimedia 2016 的 Microsoft Research - Video to Text (MSR-VTT) Challenge。地址为 MSR-VTT 。该数据集包含10000个视频片段(video clip),被分为训练,验证和测试集三部分。每个视频片段都被标注了大概20条英文句子,共200000条句子。此外,MSR-VTT还提供了每个视频的类别信息(共计20类),这个类别信息算是先验的,在测试集中也是已知的。同时,视频都是包含音频信息的。该数据库共计使用了四种机器翻译的评价指标,分别为:METEOR, BLEU@1-4,ROUGE-L,CIDEr。
    train-video: download link
    test-video: download link
    baidu pwd:nxyk

  • YouTube2Text dataset(or called MSVD dataset):该数据集同样由Microsoft Research提供,地址为 MSVD 。该数据集包含1970段YouTube视频片段(时长在10-25s之间),每段视频被标注了大概40条英文句子。

  • MPII-MD dataset: 全称

### 视频分析相关的GitHub项目和资源 对于视频分析领域,GitHub上存在许多高质量的开源项目和资源集合。这些项目涵盖了计算机视觉、机器学习以及深度学习等多个方面[^1]。 #### 计算机视觉框架 一些流行的计算机视觉库提供了丰富的工具来支持视频处理和分析功能。例如OpenCV是一个广泛使用的图像处理库,它也具备强大的视频操作能力。可以查找基于此库构建的应用实例或者扩展模块来进行更深入的研究开发工作。 #### 深度学习模型部署 TensorFlow Object Detection API 是另一个非常有用的资源,在该API中包含了预训练好的目标检测模型可以直接应用于实时监控场景下的物体识别任务当中;而PyTorch Video Understanding则专注于提供一系列针对不同类型的视频理解问题(如动作分类)解决方法的相关教程与代码实现版本. 以下是几个具体的推荐仓库链接(需自行前往github搜索): - **Awesome Video Analysis**: 这个列表收集了许多关于视频数据分析方面的优秀资料。 ```python https://github.com/yourusername/awesome-video-analysis ``` - **DeepSort YOLOv3 Real Time Multiple Object Tracking System** - 结合YOLO系列的目标检测算法与SORT多目标追踪技术打造而成的一套完整的解决方案 ```python https://github.com/yourusername/deep-sort-yolov3 ``` 请注意实际地址可能有所变化,请通过关键词"video analysis"结合上述提及的技术名称在Github平台上进一步探索适合您需求的具体项目。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值