客户投诉处理中的推理与预测
1. 解决客户投诉的推理基础
在处理客户投诉时,数据的一致性和充分性至关重要。若数据集中存在不一致情况,需对其进行调整;若正例或反例数量不足,则要补充到数据集中。可能需要多次迭代才能获得预测结果,不过迭代过程是确定的,当满足特定谓词条件时,不一致或数据不足的来源会被明确指出。
1.1 示例说明
以某个知识库为例,具体情况如下:
- 交集情况 :
- 正交集: [[a(_),b(_),c(_)],[a(_),b(_)],[a(_),b(_),e(_)]]
- 负交集: [[a(_),d(_)]]
- 未分配示例: [[a(compl7),b(compl7),c(compl7),e(compl7)],[a(compl6),d(compl6)]]
- 假设情况 :
- 正假设: [[a(_),b(_),c(_)],[a(_),b(_)],[a(_),b(_),e(_)]]
- 负假设: [[a(_),d(_)]]
- 矛盾假设: []
- 假设子句 :
plaintext referBBB(X):- a(X),b(X),c(X) ; a(X),b(X) ; a(X),b(X),e(X). referBBB(X):- not a(X),d(X).