CellChat通过从图论、模式识别和流形学习中抽象出来的方法对网络进行定量测量。
它可以使用网络分析中的中心性度量来确定给定信号网络中的主要信号源和目标以及中介和影响者。
它可以利用模式识别方法预测特定细胞类型的关键输入和输出信号以及不同细胞类型之间的协调反应。
它可以通过定义相似性度量和从功能和拓扑角度进行多种学习来分组信号通路。
它可以通过多个网络的联合流形学习来描述保守的和上下文特定的信号通路。
一、识别细胞群的信号作用(例如,主要的发送者,接受者)以及主要的信号作用
(A)计算并可视化网络中心性得分
ptm = Sys.time()
# Compute the network centrality scores
cellchat <- netAnalysis_computeCentrality(cellchat, slot.name = "netP") # the slot 'netP' means the inferred intercellular communication network of signaling pathways
# Visualize the computed centrality scores using heatmap, allowing ready identification of major signaling roles of cell groups
netAnalysis_signalingRole_network(cellchat, signaling = pathways.show, width = 8, height = 2.5, font.size = 10)
netAnalysis_computeCentrality
函数:这是CellChat
包中的一个函数,其作用是计算细胞间通讯网络的中心性得分。中心性得分可以帮助我们了解每个细胞群体在整个通讯网络中的重要程度,常见的中心性指标包括度中心性(degree centrality)、接近中心性(closeness centrality)和中介中心性(betweenness centrality)等。slot.name = "netP"
:slot.name
参数指定要使用的CellChat
对象中的槽位。"netP"
表示使用推断出的信号通路的细胞间通讯网络数据来计算中心性得分。这行代码将计算得到的中心性得分更新到cellchat
对象中,并将更新后的cellchat
对象重新赋值给cellchat
变量。
netAnalysis_signalingRole_network
函数:这也是CellChat
包中的函数,用于将计算得到的中心性得分通过热图进行可视化。热图可以直观地展示不同细胞群体在特定信号通路中的信号传导角色,颜色的深浅通常表示中心性得分的高低。signaling = pathways.show
:指定要可视化的信号通路,pathways.show
应该是之前定义的一个包含要展示的信号通路名称的向量。width =