Linux安装Anaconda 后使用Anconda自带的python版本

博主在Linux环境下安装Anaconda后遇到了与原有Python 2.7及TensorFlow不兼容的问题。通过简单修改Anaconda安装目录下bin文件夹名称的方式,实现了两者之间的灵活切换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于刚学习机器学习这方面不久,听别人推荐anaconda很好用,于是在自己的Linux下安装了一个,由于本人之前环境是python2.7,并安装好了TensorFlow,没想到安装完之后,自己在命令行输入python,然后输入import tensorflow,竟然发现没有安装包了,上网看了一下,原来就是anaconda的原因,应该是安装anaconda时,第二个确认按钮是添加环境变量,我添加了,所以导致输入python后,anaconda一起启动了,本想更改环境变量,但我对Linux还不太熟,看起来很复杂,于是我自己想了一个办法,更改anaconda安装目录下bin的名字,比如我就改了变成bin1了,这样相当于暂时把anaconda“屏蔽”掉了,默认的python和配置又回来了,当需要anaconda时,再把bin的名字改回来,这样我感觉挺简单的,至少是我现在用TensorFlow需要经常切换确实方便不少,请看到的如果能解决问题我会很开心,如果有更好的解决办法也告诉我哟,谢谢!


(以前不会的问题总是在网上搜索,从来没想到自己也可以开始写呀,今天由于没找到自己想要的搜索答案,碰巧自己用一个小技巧解决了,遂要写出来,供大家观看,节省时间。这是第一个自己的经验,纪念一下)

### Anaconda 安装Python 路径查找方法 在使用 Anaconda 及其集成开发工具(如 Spyder 或 Jupyter Notebook)时,了解 Python安装路径对于调试和配置非常重要。以下是几种常见的方法来查找 AnacondaPython 的具体路径。 #### 方法一:通过命令行查看 Python 解释器路径 可以在终端或命令提示符中运行以下命令以获取当前使用Python 所对应的路径: ```bash which python # Linux/MacOS 下使用此命令 where python # Windows 下使用此命令 ``` 上述命令会返回 Python 解释器所在的绝对路径,通常类似于 `C:\Users\<用户名>\Anaconda3\python.exe` 或 `/home/<用户名>/anaconda3/bin/python`[^1]。 --- #### 方法二:利用 Python 自身脚本打印路径 可以通过执行一段简单的 Python 脚本来显示解释器的位置以及模块搜索路径。启动 Anaconda Prompt 并输入以下代码: ```python import sys print(sys.executable) # 输出 Python 解释器的实际位置 print(sys.path) # 显示模块加载路径列表 ``` 这段代码中的 `sys.executable` 将提供 Python 解释器的具体文件地址,而 `sys.path` 则列出了所有可用的库目录[^2]。 --- #### 方法三:借助 Anaconda Navigator 工具定位 如果更倾向于图形化界面操作,则可以开启 **Anaconda Navigator** 应用程序,在其中找到对应环境设置项。按照如下步骤完成查询: 1. 启动 Anaconda Navigator; 2. 导航到 “Environments” 部分; 3. 对于目标虚拟环境右键点击或者双击进入详情页面即可看到该环境下所关联的所有包及其版本号等信息[^3]。 需要注意的是,默认情况下每个新创建出来的独立工作区都会自带一套完整的依赖关系集合,因此不同项目的专属定制化需求能够得到很好地满足而不互相干扰。 --- #### 方法四:Jupyter Notebook 内部确认 当主要依靠 Jupyter Notebook 开展数据分析任务时,也可以直接在其单元格里运行下面这句指令快速检验正在调用哪个具体的 Pyhton 实例: ```python !which python # 如果是在Linux/macOS上运行 !where python # 若处于Windows操作系统下则改为此形式 ``` 这样不仅可以验证是否正确选择了预期的目标解释器实例,而且还能进一步辅助排查潜在冲突问题. --- ### 总结 以上介绍了四种有效途径帮助开发者们准确无误地锁定由 Anaconda 提供支持下的 Python 主体所在的确切物理存储地点。无论是偏好文字交互还是可视化操控方式都能从中挑选适合自己的解决方案加以实践应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值