RAG--重排序

专题1:重排序的方法

方法1:利用bge-reranker模型的能力

在检索的时候一般用的是双塔模型,使用一个模型将query和document嵌入到一个空间中,然后使用ANN算法检索

在排序的时候使用cross-encoder模型将两句话拼接到一起计算出来一个值表示相似度

方法2:用prompt方式引导LLM进行重排序:

提示词:
The following are passages related to query {{query}}
[1]{{passage_1}}
[2]{{passage_2}}
(more passages)
Rank these passages based on their relevance to the query.

方法3:利用Colbert Reranker方式进行重排序

文章链接:万字长文梳理2024年的RAG - 知乎

专题2:重排序模块评价指标

2.1 NDCG

主要是两个思想:1.高相似性的结果一定比一般关联性的结果更影响最终的指标得分;2.高关联度的结果出现在更靠前的位置时,NDCG指标会更高

首先说明计算公式:

 

2.2 MRR

专题3:重排序模型的部署

利用xinference部署,文章链接:Xinference部署reranker模型_xinference部署bge-reranker-v2-m3-CSDN博客

专题4:其他小问题

4.1 下载reranker模型的时候要下载完整,如果下载不完整的话会导致没办法加载初始权重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值