Qwen3 Embedding是阿里巴巴通义千问团队于2025年6月发布的最新文本嵌入和重排序模型系列,基于Qwen3基础大模型构建,专注于提升文本表征、信息检索和排序的核心能力。该系列模型覆盖0.6B、4B和8B三种参数规模,具备强大的多语言、多任务和跨语言能力,支持超过100种自然语言及多种编程语言,广泛适用于语义搜索、代码检索、文本分类、聚类和双语文本挖掘等场景。
核心优势与特点
- 性能:Qwen3-Embedding-8B模型在2025年MTEB多语言排行榜以70.58分排名第一,性能领先于Google Gemini、OpenAI、微软等主流商业及开源模型,重排序模型(Qwen3-Reranker)在多个基准测试中也表现优异。
- 灵活多样的模型尺寸:从轻量级0.6B适合端侧部署,到高性能8B满足复杂任务需求,开发者可根据资源和应用场景灵活选择。
- 创新架构设计:嵌入模型采用双编码器结构,分别处理查询和文档,重排序模型采用交叉编码器结构,提升语义理解和相关性判断能力。
- 任务指令感知:支持在输入中融合任务指令,增强模型对不同任务、语言和场景的适应性,提升下游效果。
- 自定义向量维度:支持用户根据需求调整输出嵌入向量维度(32至1024维),实现效率与效果的动态平衡。
- 创新训练方法:结合大规模弱监督对比学习、高质量标注数据微调及模型融合技术,显著提升模型泛化能力和鲁棒性。
- 全面多语言支持:支持超过100种语言及多种编程语言,具备强大的跨语言和代码检索能力,适合全球化和多模态应用。
部署方式
Qwen3-Embedding模型已开源,现在可在Huggingface和ModelScope上查看或下载。本地部署的方式有很多,可以使用Huggingface、Ollama、LM Studio等。
方式一:直接使用python库
可以直接使用Sentence Transformers库调用Qwen3-Embedding
# Requires transformers>=4.51.0
# Requires sentence-transformers>=2.7.0
from sentence_transforme