pytorch CUDA版本对应问题解析

CUDA是NVIDIA的并行计算平台,用于GPU加速计算。CUDAToolkit包含CUDA运行时和开发工具,而Pytorch的CUDAToolkit是精简版。nvcc是CUDA编译器,nvidia-smi显示驱动版本。CUDA版本与驱动、工具包需兼容,且CUDA是向前兼容的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

CUDA及开发工具

CUDA版本问题

CUDA Toolkit (Pytorch)与CUDA Toolkit (nvidia)版本

nvcc和nvidia-smi显示的CUDA版本一般不同

nvcc

 nvidia-smi

​编辑


参考:

(109条消息) 一文讲清楚CUDA、CUDA toolkit、CUDNN、NVCC关系_健0000的博客-CSDN博客

显卡,显卡驱动,nvcc, cuda driver,cudatoolkit,cudnn到底是什么? - 知乎 (zhihu.com)

Pytorch 使用不同版本的 cuda - yhjoker - 博客园 (cnblogs.com)

CUDA及开发工具

有人说CUDA就是一门编程语言,像C,C++,python 一样,也有人说CUDA是API。CUDA英文全称是Compute Unified Device Architecture,是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。按照官方的说法是,CUDA是一个并行计算平台和编程模型,能够使得使用GPU进行通用计算变得简单和优雅

  • cudnn:为深度学习计算设计的软件库。
  • CUDA Toolkit (nvidia): CUDA完整的工具安装包,其中提供了 Nvidia 驱动程序、开发 CUDA 程序相关的开发工具包等可供安装的选项。包括 CUDA 程序的编译器、IDE、调试器等,CUDA 程序所对应的各式库文件以及它们的头文件。
  • CUDA Toolkit (Pytorch): CUDA不完整的工具安装包,其主要包含在使用 CUDA 相关的功能时所依赖的动态链接库。不会安装驱动程序。
  • (NVCC 是CUDA的编译器,只是 CUDA Toolkit 中的一部分)

CUDA版本问题

CUDA Toolkit (Pytorch)与CUDA Toolkit (nvidia)版本

在安装CUDA Toolkit (Pytorch)时,会下载相应的toolkit包(Pytorch版本与对应CUDA toolkit版本对应关系可以查看官方列表),也就是说,官方发布了自己提前根据对应CUDA toolkit版本编译的pytorch包,编译好的pytorch包也会直接调用下载的轻量版本的CUDA Toolkit (Pytorch)。

这时候,只需要系统配合与当前的 cudatoolkit 所兼容的 Nvidia 驱动,则已经编译好的 CUDA 相关的程序就可以直接运行,不需要重新进行编译过程。

但如果如需要为 Pytorch 框架添加 CUDA 相关的拓展时(Custom C++ and CUDA Extensions),需要对编写的 CUDA 相关的程序进行编译等操作,则需安装完整的 Nvidia 官方提供的 CUDA Toolkit。

nvccnvidia-smi显示的CUDA版本一般不同

nvcc

nvcc --version 
# 如果提示找不到nvcc,是因为nvcc没有被添加到可执行文件环境变量中或在可执行文件目录没有nvcc
# 不应根据提示安装cuda-toolkit,因为安装的版本是软件库的固定版本,一般不适用自己需要的版本
# 可以使用如下命令
sudo cp /usr/local/cuda/bin/nvcc /usr/bin

或者(推荐)

export PATH=/usr/local/cuda-11.3/bin/:$PATH

 nvidia-smi

watch -n 0.1 -d nvidia-smi     #每隔0.1秒刷新一次

 CUDA有两个主要的API:runtime(运行时) APIdriver API。这两个API都有对应的CUDA版本(如11.3和12.0等)。

  • 用于支持driver API的必要文件(如libcuda.so)是由GPU driver installer安装的。nvidia-smi就属于这一类API。
  • 用于支持runtime API的必要文件(如libcudart.so以及nvcc)是由CUDA Toolkit installer安装的。(CUDA Toolkit Installer有时可能会集成了GPU driver Installer)。nvcc是与CUDA Toolkit一起安装的CUDA compiler-driver tool,它只知道它自身构建时的CUDA runtime版本。它不知道安装了什么版本的GPU driver,甚至不知道是否安装了GPU driver。

直白点说

nvidia-smi显示的是驱动版本对应的CUDA版本,即当前驱动支持的最新CUDA版本

nvcc -V显示的是目前设置的CUDA Toolkit版本(nvcc程序在目录cuda/bin/下)

值得一提的是,NVIDIA的CUDA是向前兼容的,所以在安装显卡驱动时,在算力支持的前提下,尽可能安装高的CUDA版本,以支持更多版本的CUDA Toolkit。

具体架构关系如下图所示:

### PyTorchCUDA 和 NCCL 的版本兼容性分析 PyTorch 是一个流行的深度学习框架,它依赖于 NVIDIA 提供的 CUDA 工具包来实现 GPU 加速计算。此外,在分布式训练场景下,NCCL 库被广泛用于优化多 GPU 训练性能。以下是关于它们之间版本兼容性的详细说明: #### 1. **PyTorchCUDA 的兼容性** PyTorch 发布时会指定其支持的 CUDA 版本范围。通常情况下,PyTorch 使用预编译的方式提供不同 CUDA 版本的支持。例如,通过 `conda` 或 `pip` 安装的 PyTorch 包会在名称中标明所使用的 CUDA Toolkit 版本[^1]。 - 如果用户的显卡驱动程序支持更高的 CUDA 版本,则可以选择安装更高版本PyTorch 来利用新特性。 - 反之,如果显卡仅支持较低版本CUDA,则需要选择与之匹配的 PyTorch 版本。这种情况下可能需要手动编译 PyTorch 源码以适配特定硬件环境[^2]。 #### 2. **CUDA 和 NCCL 的关联** NVIDIA Collective Communications Library (NCCL) 主要负责处理跨多个设备间的高效数据传输操作。它是现代高性能计算应用不可或缺的一部分,尤其是在涉及大规模并行化的工作负载时更是如此。 - 不同版本CUDA 带有不同的默认 NCCL 实现。因此当升级或降级 CUDA 时需要注意相应调整 NCCL 设置以免引发错误行为或者降低效率[^4]。 #### 3. **综合考虑下的最佳实践建议** 为了简化开发流程减少潜在冲突风险,推荐按照如下顺序完成软件栈搭建工作流: - 确定目标平台上的图形处理器型号及其对应的最低所需驱动级别; - 根据此信息选取恰当组合形式即满足项目需求又能充分发挥现有资源潜力的最佳选项列表之一; 下面给出部分已知常见搭配作为参考依据但不限于这些列举项: | PyTorch Version | Supported CUDA Versions | Default NCCL Backend | |------------------|-------------------------------|-----------------------| | v1.9.x | CUDA 10.2, CUDA 11.1 | NCCL 2.8 | | v1.10.x | CUDA 10.2, CUDA 11.3 | NCCL 2.8/2.9 | | v1.11.x | CUDA 10.2, CUDA 11.5 | NCCL 2.9 | | v1.12.x | CUDA 11.3, CUDA 11.6 | NCCL 2.10 | | v1.13.x | CUDA 11.6, CUDA 11.7 | NCCL 2.11 | 注意上述表格并非详尽无遗而且随着时间推移还会有更多新型号加入其中所以实际部署前务必查阅最新官方文档获取最精确指导[^3]。 ```python import torch print(torch.version.cuda) # 查看当前PyTorch绑定的CUDA版本 ``` --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值