在Jupyter里面安装torch的历程

文章讲述了在使用PyTorch时遇到的安装问题,包括从StartLocally下载遇到的超时和ERROR,解决方法是更换镜像至清华源,并在指定目录下创建缺失的文件夹和txt文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Start Locally | PyTorch这个网址上下载or获取下载的命令

2.在Anaconda prompt里输入这个命令

安装过程中出现的报错:

1.ERROR: Exception: 

Traceback (most recent call last):.............

超时了,换个镜像,这里换的是清华的镜像,参考文章:https://blog.csdn.net/weixin_46254308/article/details/106167583

2.ERROR: Could not install packages due to an OSError: [Errno 2] No such file or directory: 'C:\\Users\\28218\\AppData\\Local\\Temp\\pip-req-tracker-_ir7icql\\9d174158e278a1975aefa495fd2a431eb131a0dadc04c635a6b2de51'

就直接顺着这个目录,新建文件夹,新建txt文件,就好了,参考文章:

https://blog.csdn.net/a1456123a/article/details/127248059

### 如何在 Jupyter Notebook 中安装 PyTorch GPU 版本 要在 Anaconda 的 Jupyter Notebook 环境中安装支持 GPU 的 PyTorch,可以按照以下方法操作: #### 1. 创建并激活 Conda 虚拟环境 首先需要创建一个新的 Conda 虚拟环境来隔离依赖项。通过以下命令完成: ```bash conda create -n pytorch_env python=3.9 ``` 接着激活该虚拟环境: ```bash conda activate pytorch_env ``` #### 2. 安装 PyTorch GPU 版本 访问官方 PyTorch 官网 (https://pytorch.org/) 并根据操作系统、包管理器以及 CUDA 版本来获取适合的安装命令[^1]。例如,如果使用的是 Windows 操作系统,并希望安装带有 CUDA 支持的 PyTorch,则可以通过以下命令实现: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c nvidia ``` 上述命令会自动下载对应版本的 PyTorch 及其依赖库。 #### 3. 验证 PyTorch 是否正确安装 为了确认 PyTorch 已经成功安装并且能够检测到 GPU 设备,可以在 Python 解释器或者脚本中执行以下代码片段: ```python import torch print(torch.__version__) # 打印当前使用的 PyTorch 版本号 print(torch.cuda.is_available()) # 如果返回 True 表明 GPU 正常工作 ``` 当 `torch.cuda.is_available()` 返回 False 时,可能是因为未正确设置 CUDA 或者硬件不兼容等问题[^4]。 #### 4. 将新的 Conda 环境集成至 Jupyter Notebook 为了让 Jupyter Notebook 认识到刚刚创建好的 Conda 环境及其内部安装的内容,需先安装 nb_conda_kernels 包以便动态识别多个 conda envs: ```bash conda install nb_conda_kernels ``` 之后重新启动 Jupyter Notebook 即可看到新增加的 kernel 列表选项里包含了刚才建立起来的新环境名称(pytorch_env)[^3]。 #### 5. 测试 GPU 加速功能 最后一步是在基于指定内核运行的新建 Notebooks 文件里面尝试一些简单的张量运算以检验整个流程是否顺畅无误。比如下面这段演示如何利用 GPU 进行矩阵乘法计算的小例子: ```python device = 'cuda' if torch.cuda.is_available() else 'cpu' tensor_a = torch.rand((100, 100)).to(device) tensor_b = torch.rand((100, 100)).to(device) result_tensor = tensor_a @ tensor_b print(result_tensor.device) # 应显示 cuda:0 若一切正常的话 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scouttttt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值