声音克隆项目coqui-aiTTS实战(大模型实战)

目录

coqui-aiTTS是一个开源的文本转语音(TTS)项目,旨在提供高质量的声音克隆和语音合成功能。它利用深度学习技术,能够模仿特定说话人的声音特征,实现个性化的语音输出。该项目支持多语言,并提供了训练工具,允许用户使用自己的数据集来创建定制的TTS模型。coqui-aiTTS的目标是为开发者和研究者提供一个灵活、强大的TTS解决方案,可用于各种应用场景,如虚拟助手、有声读物或个性化语音界面等。(CUDA驱动11.8)

一  coqui-aiTTS简介

1.1 coqui-aiTTS简介

1.2 oqui-aiTTS项目开源地址

二  依赖基础环境搭建

2.1 (Conda方式安装)Python安装(3.8版本)

2.2 PyTorch (for CUDA support)

2.3 eSpeak NG 安装

2.4 Coqui TTS代码下载和安装

1. Coqui TTS代码下载

三  coqui-aiTTS预训练模型合成声音

3.1 查看模型

3.2 合成英文声音

3.3 合成中文声音

四 coqui-aiTTS克隆声音

4.1 声音样本准备

4.2 metadata.csv文件准备

4.3 训练脚本准备

4.4 克隆训练

五 使用克隆的声音(训练含有克隆声音的模型)

5.1 tts-server命令

5.2 已经训练模型合成声音

六 模型部署常规异常与处理

6.1 下载问题

6.2 stft requires the return_complex parameter

6.3 ValueError:  [!] Model file not found in the output path

6.4 timeout('_ssl.c:1114: The handshake operation timed out'))


一  coqui-aiTTS简介

1.1 coqui-aiTTS简介

coqui-aiTTS是一个开源的文本转语音(TTS)项目,旨在提供高质量的声音克隆和语音合成功能。它利用深度学习技术,能够模仿特定说话人的声音特征,实现个性化的语音输出。该项目支持多语言,并提供了训练工具,允许用户使用自己的数据集来创建定制的TTS模型。coqui-aiTTS的目标是为开发者和研究者提供一个灵活、强大的TTS解决方案,可用于各种应用场景,如虚拟助手、有声读物或个性化语音界面等。(CUDA驱动11.8)

1.2 oqui-aiTTS项目开源地址

这个是github 上一个比较火的开源项目:GitHub - coqui-ai/TTS: 🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production

项目说明文档如下:TTS 0.22.0 documentation

二  依赖基础环境搭建

2.1 (Conda方式安装)Python安装(3.8版本)

conda create -n ttsenv python=3.8.10

首先安装conda,然后运行上面的命令,出现下面的情况,直接输出y。就可以安装指定版本的Python环境。

安装成功入下图所示。

输入:conda activate ttsenv 激活环境。

前缀显示如图,在表示进入指定的虚拟环境,这个环境和系统的python环境是隔离的。

2.2 PyTorch (for CUDA support)

进入下面的链接:Start Locally | PyTorch

选择适合自己的。

页面显示如下图所示:

复制其中的安装命令:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

成功安装页面显示:

验证是否成功安装

CMD终端输入:pip list,成功安装如图所示。

2.3 eSpeak NG 安装

eSpeak NG 安装地址如下:

Microsoft C++ 生成工具 - Visual Studio

CSDN:https://download.csdn.net/download/sdfghwijiebvnd/89664356

显示页面如下:

2.4 Coqui TTS代码下载和安装

1. Coqui TTS代码下载

如果网络环境比较好,直接使用git下载指定版本。

git clone GitHub - coqui-ai/TTS: 🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production(建议使用0.11.1,不然很可能需要的是Python 3.9以上版本)

如果网络环境不行,可以使用CSDN下载好的资源。

CSDN:https://download.csdn.net/download/sdfghwijiebvnd/89664369

  1. Coqui TTS安装

解压并进入项目文件夹,TTS-0.11.1

cd TTS-0.11.1

安装TTS命令:

pip install -e .

安装成功输出如图所示:

### Coqui TTS 使用教程与安装配置 #### 什么是 Coqui TTS? Coqui TTS 是一种开源的文本到语音(Text-to-Speech, TTS)工具,由德国开发者主导开发并维护。它最初与 Mozilla 的 TTS 库有关联,但随着后者停止更新,Coqui TTS 成为了当前较为活跃和稳定的开源语音合成解决方案之一[^1]。 #### 安装步骤 以下是基于 Python 环境下的 Coqui TTS 安装指南: 1. **创建虚拟环境** 推荐使用 `venv` 创建独立的 Python 虚拟环境以避免依赖冲突。 ```bash python3 -m venv coqui_env source coqui_env/bin/activate ``` 2. **安装必要的依赖项** 需要确保系统已安装最新版本的 pip 和 setuptools。 ```bash pip install --upgrade pip setuptools wheel ``` 3. **安装 Coqui TTS 包** 可通过 PyPI 下载官方发布的 Coqui TTS 包。 ```bash pip install TTS ``` 4. **验证安装成功** 运行以下命令测试基本功能是否正常工作。 ```bash tts --list_models ``` 此命令会列出可用的语言模型及其名称[^3]。 #### 中文支持与模型选择 对于中文的支持,可以指定预训练好的中文模型进行语音合成。例如: ```bash tts --text "这是一个用于测试的中文句子。" \ --model_name "tts_models/zh-CN/baker/tacotron2-DDC-GST" \ --out_path ./output_chinese.wav ``` 上述命令中的 `--model_name` 参数指定了适用于普通话的 Baker 数据集训练的 Tacotron2 模型[^5]。 #### 树莓派上的部署 如果目标设备是树莓派,则需特别注意硬件性能限制以及兼容性问题。具体操作如下: - 更新操作系统软件包; - 安装基础构建工具链; - 下载适合 ARM 架构的 TensorFlow 版本作为后端支持; - 测试生成音频文件的质量是否满足需求[^2]。 #### 声音克隆特性 除了标准的声音合成功能外,Coqui TTS 还提供了声音克隆的能力,允许用户上传自己的录音样本来自定义个性化发音风格[^4]。 ```python from TTS.api import TTS # 初始化 API 并加载默认英语模型 tts = TTS(model_name="tts_models/en/ljspeech/vits", progress_bar=False) # 合成一段英文短语至内存缓冲区而非保存为本地文件 audio = tts.tts("This is a test sentence.", speaker_wav="./example_voice.wav") # 将结果写入 WAV 文件 tts.save_wav(audio, "./custom_output.wav") ``` 以上代码片段展示了如何利用 Python SDK 来实现更灵活的应用场景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值