将[0,255]的二值图像转成可以训练的[0,1]二值图像

这篇博客介绍了如何在深度学习的语义分割任务中,将使用255表示的二分类图像数据集转换为0和1表示的格式,以便于模型训练。通过Python和C++代码示例展示了转换过程,涉及图像读取、像素值替换和保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在深度学习中的语义分割任务中,像素值大小代表种类,例如0为背景, 1 , 2 , 3 , . . . n 1,2,3,...n 1,2,3,...n代表了各个种类。因此如果下载的二分类语义分割数据集图像是 0 , 255 0,255 0,255的二值图像的话,就需要存成 0 , 1 0,1 0,1图像进行训练

代码

from PIL import Image
import numpy as np
import os

if __name__ == '__main__':
    work_dir = "Test_GroundTruth" # 图像所处文件夹
    file_names = os.listdir(work_dir)
    for file_name in file_names:
        # print(file_name) # ISIC_0000000_Segmentation.png
        file_path = os.path.join(work_dir,file_name)

        image = Image.open(file_path)
        img = np.array(image)
        img[img==255] = 1
        
        # 重新保存
        image = Image.fromarray(img,'L')
        new_name = file_name[:-4]
        new_name = new_name.strip("_Segmentation") # 文件名处理成和图像一样的名字

        image.save(f'{new_name}.png')        

cpp参考

#include<opencv2/opencv.hpp>

using namespace std;
using namespace cv;

int main()
{
	Mat img = imread(
		"E:/download/custom_dataset/labels_0-255/ISIC_0000000_segmentation_0.jpg",0);
	cout << img.size << endl;
	cout << img.channels() << endl; // [256,256,1]
	/*imshow("w", img);
	waitKey();*/

	for (int j = 0; j < img.rows; j++) {
		uchar* p = img.ptr<uchar>(j);
		for (int i = 0; i < img.cols; i++) {
				if (int(p[i]) != 0) {
					p[i] = 1;
			}
		}
	}

	imshow("w", img);
	waitKey();
	imwrite("re.png", img);

	return 0;
}

结果

在这里插入图片描述
在这里插入图片描述

显示

因为opencv的显示不能自动放缩,所以看起来是全黑的,这个时候我们用pythonmatplotlib包来显示保存下来的文件看看

import matplotlib.pyplot as plt
from PIL import Image

if __name__ == '__main__':
    re = Image.open('re.png')
    plt.imshow(re,cmap='gray')
    plt.show()

在这里插入图片描述

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值