最近这两年发帖更少了。
看深度学习,总体来说流程应该是这样的。
从大的视角来看,探索是一个科学问题,研究业务上的发展方向、探索思路,结合研究理论来把先验知识组织起来,利用经验将特征分析方法、样本数据以及特征数据准备起来。重要的是特征分析,以及对机器学习或深度学习方法的设计,最好还有小范围的验证
怎么收集数据,尤其是大规模的数据,然后去做特征工程、做数据集,然后建模、训练、评价等等步骤,这个步骤我看来应该就是个工程化的问题。对于小的数据集和简单的模型,应该不难解决。但是对于稍大或很大的数据集和复杂的模型,搞GPU、配置CUDA、配置环境等等隐性的工作也很多,而且这时候就已经进入到了生产模型的环节了,工程化的方法就显得很重要了。像BAT和HW的学习平台,就能节约很多精力。
应用问题当然首先是一个工程问题。这个环节主要应该做好闭环的设计,并在这个指导下将模型用好,这才是最实际的结果。