python实现kmeans算法

本文详细介绍了如何使用Python的K-means聚类算法对鸢尾花数据集进行分类,包括数据预处理、初始化聚类中心、计算欧式距离、分配样本到最近的聚类中心以及更新聚类中心的过程,并展示了最终的分类结果和聚类中心图形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        这里是对鸢尾花进行分类,如果要修改,只需要换路径df还有种类k就可以了。具体逻辑在很多博客讲解已经很清楚了。

import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt

df = pd.read_csv("C:/Users/wxc/Desktop/xuexi/pythonProject/机器学习/分类与聚类/kmeans/ris.csv")
X_train = df.iloc[:, 0:4].values# 将数据集转换为numpy数组
k = 3# 设置聚类中心的个数
random_point = X_train[random.sample(range(len(X_train)), k)]# 这里是用的numpy数组,从 X_train 中随机选择 k 个样本作为初始的聚类中心

# 计算欧式距离,并将每个样本分配到最近的聚类中心
def assign_cluster(X_train, random_point):
    cluster_assignment = []
    for x in X_train:
        distances = [np.linalg.norm(x - point) for point in random_point] #这里在进行欧式距离的计算
        closest_cluster = np.argmin(distances)  # 获取最小距离对应的聚类中心的索引值
        cluster_assignment.append(closest_cluster) #添加进去
    return cluster_assignment

# 更新聚类中心
def New_centers(X_train, cluster_assignment, k):
    new_centers = []
    for i in range(k):
        cluster_mean = X_train[cluster_assignment == i].mean(a
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值