- 博客(720)
- 资源 (2)
- 收藏
- 关注
原创 LangChain OpenAIEmbeddings
摘要:OpenAIEmbeddings是LangChain中用于文本向量化的核心组件,能将文本转换为高维向量表示。本文详细介绍了其使用方法,包括基础安装、初始化、批量处理、参数配置(模型选择、性能优化)等,并提供了文档检索、语义相似度计算等实际应用示例。文章还包含性能优化技巧(异步处理、缓存机制)、成本控制策略(经济模型、批量处理)以及常见问题解决方案。最后总结了最佳实践,包括模型选择、批量处理、错误处理等建议,帮助开发者高效实现文本语义理解功能。(150字)
2025-09-08 16:10:59
350
原创 LangChain RetrievalQA
RetrievalQA是LangChain的核心组件,结合检索与问答功能,从文档中查找信息并生成答案。工作流程包括检索相关文档和生成自然语言答案两个阶段。支持四种处理策略:简单高效的"stuff"、适合长文档的"map_reduce"、迭代优化的"refine"和评分优先的"map_rerank"。可通过自定义提示模板、混合检索器和缓存机制优化性能,适用于企业知识库、学术研究等场景。关键是根据文档量选择合适策略,并配置检索参数和
2025-09-08 16:02:22
922
原创 LangChain: load_tools函数
LangChain的load_tools函数支持加载多种功能工具,包括搜索引擎(Google/SerpAPI/Bing)、数学计算(LLM/Wolfram)、代码执行(Python REPL)、数据库查询、API调用(天气/新闻)等。使用时需配置相应API密钥,可通过get_all_tool_names()查看完整工具列表。工具可组合使用构建不同应用场景的AI代理,如研究助手、数据分析助手等,但需注意API成本、速率限制和隐私安全。
2025-09-08 15:04:10
241
原创 LangChain: Agent(代理)
摘要:LangChain的Agent是一个由语言模型驱动的智能系统,能够自主决策和执行动作。它包含工具(Tools)、代理类型(AgentTypes)和执行器(AgentExecutor)三大核心组件,支持零样本推理、结构化聊天和OpenAI函数调用等多种代理类型。Agent可实现研究助手、数据分析和客户服务等实际应用,通过工具描述优化、错误处理和记忆集成等最佳实践提升性能。其核心优势在于自主工具使用、多步推理和实时信息获取能力,适用于各种需要理解和执行复杂任务的场景。(150字)
2025-09-08 15:00:46
866
原创 SerpApi:搜索引擎结果页 API
SerpApi是一款专业搜索引擎API服务,为开发者提供结构化搜索结果数据,支持Google、Bing、百度等主流搜索引擎。核心优势包括免爬虫管理、自动处理反爬机制、返回JSON格式结构化数据。在LangChain框架中,SerpApi作为重要工具为AI应用提供实时网络信息访问能力,弥补LLM知识时效性缺陷,可查询天气、股价等动态信息。服务提供免费测试额度,支持多引擎搜索和丰富结果类型,是连接AI模型与现实世界信息的桥梁。
2025-09-08 14:51:18
648
原创 LangChain: Evaluation(评估)
LangChain框架提供了全面的评估工具,帮助开发者系统性地衡量LLM应用的质量。评估方法包括:1)基于字符串的精确匹配评估;2)基于嵌入的语义相似度评估;3)使用LLM进行多维度评估(如相关性、完整性等)。评估流程包含测试数据准备、预测生成、质量评估和结果分析四个步骤,支持自定义评估标准和权重设置。该框架支持自动化批量评估、模型对比测试和内容安全审核,特别适用于问答系统、文本生成等场景的质量监控和优化。通过可视化评估结果和持续性能跟踪,开发者可以有效提升模型输出质量。
2025-09-08 14:11:25
540
原创 Langchain:chain调用方法实战
本文介绍了使用LangChain框架开发大型语言模型(LLM)应用的四种核心链式结构:LLMChain、SimpleSequentialChain、SequentialChain和RouterChain。LLMChain实现基础文本生成功能;SimpleSequentialChain展示线性任务串联;SequentialChain演示多输入输出的复杂工作流;RouterChain则实现智能问题路由。文章通过代码示例详细解析了每种链的结构特点、执行流程和应用场景,并提供了温度参数控制、模板设计、错误处理等优化
2025-09-08 12:07:07
682
原创 LangChain :Chain
摘要: LangChain中的**Chain(链)**是核心抽象,用于将多个组件(如模型、提示模板等)按逻辑顺序连接,完成复杂任务。LLMChain是最基础的链,通过提示模板和模型调用实现单步任务。高级链类型包括: SequentialChain:多链顺序执行(如翻译后总结); TransformationChain:处理列表数据(如分块摘要); RouterChain:根据输入路由到不同子链; CustomChain:自定义复杂逻辑。 优势:通过模块化组合解决多步任务(如搜索+提炼+生成答案),提升代码可
2025-09-05 19:01:17
673
原创 LangChain: Models, Prompts 模型和提示词
本文介绍了多种调用AI模型API的方法,包括OpenAI和DeepSeek。主要内容包括:1)通过python-dotenv获取API密钥;2)两种直接调用API的方式(OpenAI的ChatCompletion和DeepSeek的HTTP请求);3)使用LangChain框架集成这两种API,展示了模板构建、消息格式化和输出解析的完整流程;4)通过客户邮件翻译和服务回复两个示例,演示了风格转换功能;5)详细介绍了如何使用OutputParsers将模型输出解析为结构化数据。文章提供了可直接运行的代码示例,
2025-09-05 17:51:06
474
原创 LangChain四种Memory调用
本文介绍了LangChain框架中的四种对话记忆机制:1) ConversationBufferMemory完整记录所有对话历史;2) ConversationBufferWindowMemory仅保留最近k次对话;3) ConversationTokenBufferMemory根据token数限制记忆内容;4) ConversationSummaryMemory自动生成对话摘要。通过代码示例展示了每种机制的具体实现方式,包括如何设置GPT-3.5模型、保存对话上下文以及加载记忆变量。这些记忆机制可以根据不
2025-09-05 17:46:15
201
原创 LangChain: Memory
摘要:LangChain中的Memory机制使AI能够记住对话历史,实现连贯的多轮交互。它通过保存上下文信息,让AI理解"它"等指代内容。LangChain提供多种Memory类型:基础型(完整保存对话)、优化型(滑动窗口或摘要保存)、高级型(结构化存储实体或知识图谱)。开发者可根据场景选择合适类型,并需注意Token消耗和状态管理。通过将Memory与对话链结合,可以构建具有持续记忆能力的智能对话系统。
2025-09-05 17:21:38
699
原创 不同语言在触发科学计数法计数时的差异
不同系统和工具对科学计数法的触发条件存在差异:编程语言方面,Java在7位小数时转换,Python在指数绝对值≥3时触发,JavaScript则在指数≥21时转换;数据库系统中,Oracle对≥10^126的数转换,MySQL默认使用科学计数法,SQL Server阈值是10^17;Excel对≥12位整数或≥6位前导零小数自动转换。通用解决方案包括强制格式化输出、使用Decimal类型、以及在前端手动格式化字符串。核心触发规律是整数位≥15位或前导零≥6位,最佳实践是主动控制数值输出格式以确保精度。
2025-08-29 11:52:17
1023
原创 保存按钮加loading功能如何测试?
测试“保存按钮加loading”这个功能需求。主要验证当用户点击保存按钮后,按钮是否显示加载状态(loading),并在操作完成后恢复正常。点击保存按钮后,按钮立即进入loading状态(如显示旋转图标、按钮禁用等)。保存操作完成后(成功或失败),按钮恢复正常状态(loading图标消失,按钮可点击)。在按钮处于loading状态时,按钮不可点击(防止重复提交)。在loading过程中,用户无法再次触发保存操作。模拟网络延迟:检查在长时间保存操作中,loading状态是否持续显示。
2025-08-25 09:51:54
565
原创 java和javascript在浮点数计算时的差异
JavaScript和Java浮点数计算结果存在微小差异(4894.5599999999995 vs 4894.55999999999904),主要原因是:1) IEEE754双精度浮点数标准在不同语言中的实现细节差异;2) 101.96999999999998作为无限循环小数在存储时存在精度损失;3) 两种语言对中间计算步骤的优化策略不同。对于精确计算,建议使用BigDecimal(Java)或big.js(JavaScript)等定点数库,或采用容差比较法。在大多数业务场景中,这种微小的精度差异(10^
2025-08-20 14:29:00
446
原创 python精确计算浮点数乘法
精确计算浮点数乘法:101.96999999999998 × 48.0使用python计算,输入结果为4894.5599999999995,但是这个值是错误的。
2025-08-20 13:51:53
332
原创 智能测试用例生成工具设计
本文提出了一种智能测试用例生成工具的设计方案,该工具通过整合公司历史测试用例库与AI能力,实现高效规范的测试用例生成。系统包含三大核心组件:历史用例集成模块(加载多种格式用例库并建立语义检索索引)、AI生成引擎(基于GPT-4结合公司规范生成结构化用例)和完整工作流(检索-生成-验证闭环)。该方案支持Gherkin语法输出,确保覆盖正向/逆向/边界测试场景,并能将新用例反馈至知识库。关键优势包括知识传承、规范遵循、智能生成和效率提升,建议采用私有化部署并建立人工审核机制。实际应用示例展示了用户注册功能的测试
2025-08-14 15:48:23
534
原创 Langchain结合deepseek:框架+模型的AI测试实践
langchain:将多个AI指令像乐高积木一样拼接,构建复杂工作流(例如:需求分析→生成测试用例→执行测试→生成报告)。:自动记录测试上下文,让AI像人类测试员一样"记住"历史用例和失败场景。:让AI自主决策何时调用Selenium、Postman等工具,实现全流程无人值守。
2025-08-12 19:07:53
1106
原创 Hugging Face和langchain的区别
选择依据推荐需要预训练模型或数据集选 Hugging Face要微调或训练新模型选 Hugging Face构建基于LLM的应用程序选 LangChain实现多步骤AI工作流选 LangChain创建自主AI代理选 LangChain模型演示和分享选 Hugging Face最佳实践:在真实项目中,通常同时使用两者用 Hugging Face 获取/微调模型用 LangChain 构建应用逻辑。
2025-08-12 17:43:30
678
原创 Hugging Face是什么?
🚀 AI 民主化引擎:让每个人都能使用先进AI技术🤝 开发者社区:全球最大的AI协作平台🧠 模型生态系统:从研究到生产的完整解决方案🛠️ 生产力工具:简化AI开发全流程。
2025-08-12 17:38:47
1183
原创 LangChain 调用deepseek模型
使用 DeepSeek 替代 OpenAI 的方案在功能和性能上相当,特别适合中文场景,且对国内用户网络更友好。主要支持主流模型(OpenAI、Anthropic、Hugging Face 等)DeepSeek 作为新兴国产模型,尚未被官方集成。备注:主要是用langchain,本方案不考虑。原因:DeepSeek 的 API 接口。可以利用这一点实现无缝对接。
2025-08-12 17:32:09
916
1
原创 LangChain:构建LLM驱动应用 的开源框架
:LangChain 是构建 LLM 应用的“瑞士军刀”,让语言模型从聊天玩具升级为生产力工具。
2025-08-12 16:21:05
858
原创 如何使用gpt进行模式微调(2)?
对 GPT(Generative Pre-trained Transformer)类大模型进行微调(Fine-tuning),是将其适配到特定任务或领域的关键步骤。以下是 ,涵盖方法选择、数据准备、训练配置、评估部署等核心环节,并提供 。
2025-08-12 10:09:54
886
原创 如何使用gpt进行模型微调?
对 GPT 类大语言模型(如 GPT-3、GPT-2、Hugging Face 的 GPT 系列、ChatGLM 等开源或闭源模型)进行微调(Fine-tuning),目的是让模型在特定任务或领域(如法律、医疗、客服、代码生成等)上表现更优,或适配企业私有数据。微调主要分为 和 两类,下面从流程、方法、工具和注意事项展开说明。
2025-08-12 10:04:56
955
原创 测试团队的年度OKR
:该OKR体系既覆盖了测试团队的核心职责(功能质量、自动化效率),又通过效能提升强化团队长期竞争力,最终实现“质量可靠、交付快速、团队成长”的年度目标。
2025-08-11 15:29:59
691
原创 20250806美团外卖回应霸王茶姬券被回收
美团外卖在官方微博回应称,“原本,我们和霸王茶姬正在为大家准备秋天的第一杯好茶,今天请可爱的骑手们先喝时,手一抖,提前发给了大家。既然提前发了,那我们就先喝起来吧,一起先甜!8月6日,有网友发文称领到了美团的霸王茶姬奶茶券,可以0元兑换一杯奶茶,但随后券又被收回,并直言“玩不起别玩”。随后,“美团 霸王茶姬”冲上热搜!
2025-08-07 16:36:32
200
原创 接口自动化怎么写
接口自动化测试通过代码自动验证API功能,核心步骤包括:确定测试目标(状态码、响应结构等)、选择工具(Python常用requests+pytest)、编写测试用例(参数化测试、依赖处理)、设计断言(数据验证、JSON结构)、生成测试报告并集成到CI流程。关键优化点包括请求封装、环境配置和并发执行。典型工具链为Python+requests+pytest+Allure,适合验证业务接口的正确性和性能。
2025-07-03 13:41:06
462
原创 做测试工程师,整天点点点,感觉很枯燥怎么办
测试工程师如何突破重复劳动?本文给出实用建议:1.技术层面从手工测试转向自动化(Selenium/Postman)、性能/安全测试(JMeter/BurpSuite),进阶测试开发;2.拓展质量保障边界,参与全流程测试并运用AI辅助;3.通过刻意练习、技术深耕提升工作价值。职业路径可从自动化专家发展到质量架构师,关键在于用技术解决重复性问题,将测试从"功能验证"升级为"质量工程"。行动建议包含短期脚本化、中期技术分享、长期考取认证等具体步骤。
2025-06-30 13:40:49
834
原创 什么是探索式测试,应该怎么做?
探索式测试(Exploratory Testing)是一种强调“测试设计与执行同步进行”的软件测试方法,它将测试人员的知识、经验、直觉与系统探索相结合,在动态执行中灵活设计用例并发现缺陷。与传统的基于文档的测试(如预先设计好详细用例再执行)不同,探索式测试更注重实时思考、快速验证和创造性探索,适合需求不明确、变化频繁或需要快速反馈的场景。
2025-06-13 23:47:33
1110
原创 如何有效开展冒烟测试
冒烟测试(Smoke Testing)是软件开发中的关键质量关卡,旨在快速验证软件核心功能是否正常,避免将明显缺陷的版本流入后续测试阶段。其核心目标是“快速失败”:若冒烟测试不通过,则直接阻断测试流程,要求开发团队修复基础问题后再推进。
2025-06-13 23:44:35
1072
原创 常见的测试工具及分类
Web测试工具是保障Web应用质量的核心支撑,根据测试类型(功能、性能、安全、自动化等)和场景需求,可分为多个类别。以下从。
2025-06-12 22:27:53
1459
原创 测试完成的标准是什么?
测试完成的核心标准包括六大维度:需求100%覆盖且变更同步验证;严重缺陷清零,一般缺陷数量可控;全层级测试通过且非功能指标达标;在资源与时间限制下剩余风险可接受;获得开发、产品及运维方的正式确认;测试文档齐全且过程可追溯。本质是通过缺陷管理、场景验证和相关方确认,确保产品质量风险处于可控范围。不同项目可根据业务优先级动态调整标准,但必须满足"需求实现、风险可控、质量达标"的基本要求。
2025-06-12 22:18:15
806
原创 常见的质量要素有哪些?
质量要素是决定产品/服务满足用户需求的关键,可分为五大类:1)产品/服务特性,包括性能、可靠性等固有属性;2)过程控制,涵盖设计开发、生产制造等全流程管理;3)管理体系,如质量体系、组织架构等制度保障;4)资源保障,包括人员、设备等基础支撑;5)用户因素,如需求理解、满意度等市场反馈。这些要素需系统协同,通过全链路管理实现质量目标。不同行业可根据特点调整侧重点,但核心都是围绕用户需求构建质量体系。
2025-06-12 21:46:43
820
原创 测试过程中有哪些风险?
测试过程中存在八大核心风险:需求模糊/变更导致测试偏离目标;测试计划不合理或资源不足影响覆盖深度;用例设计不全面或与需求脱节;测试环境不稳定或数据问题导致结果失真;缺陷管理不规范引发修复延迟;工具适配性差或技术能力不足降低效率;团队协作不畅造成信息断层;外部依赖(如第三方接口)不稳定阻碍进度。建议通过全流程管控应对,包括明确需求标准、合理规划资源、强化用例评审、完善缺陷跟踪机制等,系统性降低风险对交付质量的影响。(150字)
2025-06-12 21:42:01
683
原创 20250605车充安服务器受木马攻击导致服务不可用
https://mp.weixin.qq.com/s/2JyxmDIDBa9_owNjIJ6UIg
2025-06-05 14:10:06
461
原创 给你一个需求,你怎么进行测试?
• 示例:若需求是“用户注册后发送欢迎邮件”,需确认触发条件(注册成功时)、邮件内容规则(是否含动态变量)、异常场景(重复注册是否跳过)。• 示例:邮箱长度超限(如100字符) → 检查前端输入框拦截、后端返回400错误码。• 示例:空邮箱注册 → 检查前端提示“邮箱不能为空”、后端日志无冗余请求。• 示例:合法邮箱注册 → 检查邮件发送状态、数据库用户记录、欢迎页跳转。• 示例:注册过程中断网 → 检查本地缓存是否保留数据、重试机制是否生效。• 检查接口是否幂等(如重复调用注册接口是否导致数据重复)。
2025-04-18 10:23:26
719
原创 iphone各个机型尺寸
• 旗舰:iPhone 15 Pro(6.1英寸)、iPhone 15 Pro Max(6.7英寸)。:从早期的4.0英寸(iPhone SE)逐步扩大到6.1~6.7英寸(iPhone 15系列)。:分辨率从750x1334(iPhone SE)提升至2532x1170(iPhone 15)。• 小屏:iPhone SE(4.7英寸)、iPhone 13 mini(5.4英寸)。• 主流:iPhone 15(6.1英寸)、iPhone 15 Plus(6.7英寸)。自适应刷新率(标准屏机型仅60Hz)。
2025-04-10 10:47:52
5752
原创 requests库post方法怎么传params类型的参数
• params参数用于将数据作为查询字符串附加到请求的 URL 中。• 虽然主要用于 GET 请求,但也可以与 POST 请求一起使用。• 对于大量数据或敏感信息,建议使用data或json方法。•requests库会自动处理参数的编码,简化了请求的构建过程。希望这些信息能帮助你更好地理解和使用requests库中的params参数!
2025-03-25 13:46:38
713
原创 如何做好一个功能域的测试负责人?
根据功能域的特点和项目需求,制定详细的测试计划,明确各个测试阶段的目标、范围、方法和时间节点。:关注行业内最新的测试技术和工具,如自动化测试框架、性能测试工具、测试管理平台等,并评估其在功能域测试中的适用性。:结合功能域的具体情况,选择合适的测试方法,如黑盒测试、白盒测试、自动化测试、探索性测试等。:与产品经理保持紧密联系,参与需求评审会议,从测试角度提供专业意见和建议,确保需求的完整性和可测试性。:在项目开始前,对可能出现的风险进行全面的识别和评估,如技术难题、人员变动、需求变更等。
2025-03-19 18:27:41
601
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人