45、有限状态机学习算法解析

有限状态机学习算法解析

在系统测试与验证领域,模型检查和基于模型的测试生成等技术是提升系统可靠性的有效手段。然而,很多情况下系统模型并不存在,或者已经过时。手动构建模型不仅耗时,还依赖于测试工程师对系统的熟悉程度。因此,自动化生成系统模型成为了一种理想的解决方案。下面将详细介绍几种用于学习有限状态机的算法。

1. 学习算法基础设置

学习算法的目标是估计系统的正则语言 (U)。其基本设置包含学习者(Learner)、教师(Teacher)和预言机(Oracle)。学习者通过迭代的方式收集关于 (U) 的信息,构建假设(DFA (A))。学习者可以向教师发起成员查询(mq),询问某个字符串是否被系统 (M) 接受,答案为是(+)或否(-);还可以向预言机发起等价查询(eq),检查假设 (A) 是否与 (M) 等价。若假设不正确,预言机将返回反例。

2. 观察包算法(Observation Packs)
  • 观察包定义 :观察包是存储学习者对未知正则集信息的一种方式。观察是形如 ((s, +)) 或 ((s, -)) 的对,其中 (+)/(-) 表示成员查询的答案。观察被组织成有限集,称为组件 (C_k)。观察包 (O) 是组件的有限序列,需满足两个条件:
    • OP1:(C_k) 中最短的单词 (s_k) 是该组件中所有其他单词的前缀。
    • OP2:对于任意两个不同的组件 (C_k) 和 (C_l),存在 (w_{kl}) 使得 (s_kw_{kl} \in C_k) 且 (s_lw_{kl} \in C_l),但它们的标签不同。
    </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值