【自动驾驶论文阅读笔记——精读QDTrack】

本文深入探讨QDTrack算法,通过quasi-dense相似度学习强化目标检测器的ReID能力,实现高效跟踪。QDTrack在多个数据集上表现出色,提出的新颖bi-direction softmax策略解决了匹配难题,且不依赖复杂的运动模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

本文把关注点放在了MOT算法的REID环节,提出了“ReID环节学习不充分,且给予的重视程度不足,导致影响整体跟踪性能”的观点,使用contrastive learning的训练方法对ReID模型进行多正例学习,增强学习效果。

【论文】Quasi-Dense Similarity Learning for Multiple Object Tracking
【代码】https://github.com/SysCV/qdtrack

1. Abstract

提出了一种集成在检测器上的跟踪算法,QDTrack,利用一种稠密的相似度学习方法,对上百个region proposals进行对比学习。依次方法训练的ReID网络区分能力很好,仅用简单的associate方法就能获得很好的跟踪性能。QDTrack在MOT、BDD100K、Waymo、TAO等数据集中取得了优异的性能。

2. Introduction

在这里插入图片描述
本章主要围绕ReID和跟踪的关系表达了如下观点:
1)ReID在跟踪的地位低: 通常作为检测的后续环节进行,起辅助作用。这与人类完成跟踪任务中ReID的地位不同,人类可以仅依赖ReID完成跟踪。可以想象,在理想情况下,如果ReID网络能够出色地区分不同实例,则不需要其他花里胡哨(w\o bells and whistles)就能出色地完成跟踪;
2)ReID的效果不好: 这可能是由于其没有被完全训练好导致的,因为目前的工作中,ReID只利用了稀疏的Ground Truth进行训练,忽略了很多有价值的正例。
3)ReID的训练改进思考: 观察到GT稀疏地分布在图像中,除此之外还能有很多有训练价值的区域没有被利用:靠近GT的区域可以提供更多正例、背景区域可以提供更多负例。据此,本工作用一种Quasi-dense的学习方法,充分利用了图像的大部分学习进行相似度(ReID)学习

3. QDTrack

3.1 Object Detection

本文方法可以添加在现有的大多数检测器上,并完成端到端训练。本文中使用了Faster R-CNN+FPN作为检测器。
Faster R-CNN是两阶段检测器,用RPN生成RoI,后通过cls和loc分支完成分类和位置回归,检测部分的损失函数定义为RPN和分类、位置回归任务的损失函数的加权和:
L d e t = L r p n + λ 1 L c l s + λ 2 L r e g L_{det} = L_{rpn} + \lambda_1 L_{cls}+\lambda_2L_{reg} Ldet=Lrpn+λ1Lcls+λ2Lreg
其中, λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2均设置为1.0

3.2 Quasi-Dense Similarity Learning

本节是本论文的主要工作,即通过多正例的形式来增强ReID的训练效果,利用RPN网络生成的region proposal,以quasi-dense matching的方法完成ReID网络的的学习。
在这里插入图片描述
网络的结构如上图所示:

  1. 一次训练需要输入两张图片 I 1 I_1 I1 I 2 I_2 I2,其中 I 1 I_1 I1是用于训练的Key Frame I 2 I_2 I2
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值