《基于二维伽马函数的光照不均匀图像自适应校正算法》python复现.

整个过程主要分为四步,一是将RGB颜色空间转换维HSV颜色空间,二是提取有光照分量,采用retinex相关算法对光照进行多尺度高斯卷积,三是采用伽马函数对多尺度光照分量进行处理,最后将HSV空间颜色转换为RGB。流程图见下,代码直接附上,尺度参数可调,伽马参数也可调。
在这里插入图片描述

import cv2
import numpy as np
import os
def adjust_gamma(image, gamma=1.0):
    invGamma = 1.0 / gamma
    # table = []
    print(image)
    image=np.array(image).astype(np.uint8)

    #     table.append(((i / 255.0) ** invGamma) * 255)
    # table = np.array(table).astype("uint8")
    gamma_table = [np.power(x / 255.0, invGamma) * 255.0 for x in range(256)]
    # numpy数组默认数据类型为int32,需要将数据类型转换成opencv图像适合使用的无符号8位整型uint8,否则会报错
    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)

    print(image)
    return cv2.LUT(image, gamma_table)


def MSR(img, scales):
 weight = 1 / 3.0
 scales_size = len(scales)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值