Kaggle之旅2

本文通过Kaggle的数据集,使用pandas进行数据分析,包括统计GM数量、棋手对局量、平均每年下棋量,并计算2021年胜率最高棋手及总体黑白棋的胜率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kaggle之旅2


前言

今天继续学习pandas。并实践下All GM Chess Games on Chess.com这个dataset。

一、目标

读入dataset,做一些统计工作,如下,

  1. 一共有多少GM,都是谁
  2. 每个GM下了多少盘棋(取top10)
  3. 平均每年每个GM下几盘棋(取top10)
  4. 由于数据集时间范围是2008-05-10 ~ 2022-06-24,我们就取2021年来看看当年谁的胜率最高,首先应该要统计2021年所有棋手平局下了多少局棋,然后统计出下棋局数超过平均值的棋手都是谁,最后计算这些棋手谁的胜率最高。
  5. 总体看,执白胜率高还是执黑胜率高

二、测试

代码如下

# 1. 统计一共有多少GM,以及是谁
print(f"1. 一共有 " + str(df.player_name.nunique()) +" 位GM,分别是:")
print(df.player_name.unique())

# 2. 统计每个GM下了多少盘棋
print("\n2. 每个GM下了多少盘棋(取top10):")
print(df.player_name.value_counts().head(10))

# 3. 平均每年每个GM下几盘棋
df['Date'] = pd.to_datetime(df['Date'])
df['Year'] = df['Date'].dt.year
average_games_per_year = df.groupby(['player_name', 'Year']).size().groupby('player_name').mean().round(0).astype(int)

# 取前十名
top_10_gms_average_games = average_games_per_year.groupby(&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旻璿gg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值