Kaggle之旅3
文章目录
前言
今天继续Kaggle之旅,尝试Titanic - Machine Learning from Disaster
一、Predict survival on the Titanic and get familiar with ML basics
预测泰坦尼克号上的生存者,了解基础的ML。
学习这篇教程《Titanic Tutorial》,并重点学习其中用到的一个算法:随机森林 – random forest model
二、开始
1.基础知识
随机森林是由很多决策树构成的,不同决策树之间没有关联。当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。
构造随机森林的4个步骤
- 一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作为决策树根