Kaggle之旅3

本文介绍了如何在Kaggle上预测泰坦尼克号乘客的生存情况,通过构建随机森林模型,学习了随机森林的基本原理和在Python中使用sklearn实现的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kaggle之旅3


前言

今天继续Kaggle之旅,尝试Titanic - Machine Learning from Disaster

一、Predict survival on the Titanic and get familiar with ML basics

预测泰坦尼克号上的生存者,了解基础的ML。
学习这篇教程《Titanic Tutorial》,并重点学习其中用到的一个算法:随机森林 – random forest model

二、开始

1.基础知识

随机森林是由很多决策树构成的,不同决策树之间没有关联。当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

构造随机森林的4个步骤
  1. 一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作为决策树根
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旻璿gg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值