近日,华为开发者大会 2025 成功举办。神策数据创始人 & CEO 桑文锋在华为云“科技赋能零售,从效率提升到体验革命”零售行业 CXO 圆桌上,以“从数据驱动到知识驱动——昇腾 AI 赋能数字化用户运营“发表演讲。
桑文锋提出,“数字化用户运营需跨越技术、数据、业务、管理四大鸿沟”,通过搭建数据平台引擎能够构建闭环能力、支撑解决数据驱动问题,但业务和管理挑战依赖人工经验,难以规模化。为此,神策数据将在下一代产品中重点引入AI能力,深度整合昇腾 AI 云服务,以知识引擎为核心,构建“知识驱动”的新范式。桑文锋强调,知识工程是 AI 落地的核心,神策数据未来将持续深化与华为云合作,推动用户运营从“数据驱动”迈向“知识驱动”新阶段。以下是演讲实录:
神策数据今年成立十周年,十年间一直专注于帮助客户做好用户行为分析和用户运营,以数据驱动高绩效商业。如何实现这一点,会遇到很多挑战。
1、 技术鸿沟:
搭建和维护复杂的数据分析和用户运营系统需要专业的技术知识和技能,这对于许多企业来说是巨大的挑战,不仅需要投入大量的人力和物力,还需要持续的技术更新和升级;
2、 数据鸿沟:
专业、合理的数据建模要求数据专家对业务有深入的理解,同时具备扎实的数据处理能力,能够准确地对数据进行分类、整合和分析;
不同业务场景的数据需求各不相同,如何根据具体业务构建有效的数据模型是一个关键问题。
3、 业务鸿沟:
业务开展过程中,需要将业务目标拆解为运营目标,制定和执行运营策略,再分析结果并归因到运营目标形成闭环;
如何准确拆解业务目标?如何制定有效的运营策略?如何通过数据分析准确归因?这些问题阻碍了业务运营闭环的形成,使得数据驱动的业务决策难以落地;
4、 管理挑战:
促进技术、数据和业务专家之间的高效协作是复杂的管理问题,需要建立有效的沟通机制和协作流程,确保各方能够充分发挥自己的优势;
不同部门之间可能存在利益冲突和信息不对称,如何协调各方利益,实现信息共享和协同工作是管理面临的挑战之一。
神策数据以分步实现来解决这些问题。过去十年,我们主要解决前面两个层面的问题。我们的核心是搭建了一套数据平台,包括客户数据引擎 CDP(帮助客户打通全域用户行为数据和业务数据,构建基础支撑),客户旅程分析引擎(将 APP、小程序、Web 等终端等用户行为更好地采集和洞察),客户旅程优化引擎(更好地圈选人群、制定策略、触达用户)。
神策数据构建的三大引擎,可以服务于金融、零售、互联网等多个行业,构建闭环能力,更好地解决数据驱动问题。
以神策数据服务过的某快餐连锁品牌为例,他们推出一款"草莓堡"(化名),刚开始销量不错,但一年后持续下滑。运营人员最开始想到的是降价到 8 块 8 推低价套餐。但我们通过用户画像分析发现,买草莓堡的用户偏好多人共享,消费能力较高。所以我们建议不打低价,而是推高价特色套餐。通过 A/B 测试验证,高价套餐效果明显更好。活动期间带来 100 多万新增收入,之后又把策略扩大到几百万会员规模。
这个过程中:
通过人群画像对比分析,挖掘用户特征;
基于用户偏好,执行A/B策略;
数据反馈持续迭代,实现更好的以数据驱动数字化用户运营。
神策数据不仅提供产品体系,也提供陪跑服务。帮助客户做数据分析、制定策略、落地执行及复盘,最终赋能客户的能力提升。
神策数据现有的产品体系主要解决技术与数据鸿沟,业务和管理的挑战还需要依靠人来解决。特别对于 ToB 行业来说,仅凭“人”很难实现规模化。因此下一代产品的构建,更需要关注两件事:
1、 结合业务:把业务目标拆解成运营目标,再变成运营策略,通过运营结果持续迭代;
2、 结合AI:引入知识管理,包括行业目标管理相关的 KPI、OKR 拆解;运营策略库(针对不同客户、用户群体的策略);标签体系定义;运营分析归因、常用看板等。可以理解为:神策过去建了一台车(神策产品),但需要人开;现在要引入自动驾驶(AI)。把三大引擎(数据引擎 CDP、分析引擎神策分析、优化引擎神策智能运营)与 AI 能力结合,以知识引擎为核心,实现知识驱动。
围绕整个过程,神策也展开了与华为昇腾云的深度合作。一方面引入华为昇腾云的AI能力,另一方面在底层结合华为云GaussDB(DWS)云数据仓库,从而给客户提供更加完整的解决方案。
目前,神策数据围绕 AI 相关的探索主要在三个方向:
1、 知识工厂:
数据层:按照业务域治理数据;
语义层:建立字段关联(虚拟层无数据存储);
指标层:提前定义 LLM 无法准确定义口径和计算逻辑的指标(虚拟层无数据存储)。
在此基础上再去构建 MCP 层,将指标层和语义层封装,以便 Agent 调用。这个过程中,从知识数据准备到构建都要精准,包括处理同义词、歧义消除。用户提出的需求可能是模糊的,平台需要通过互动进行确认。因此神策数据构建了自己的知识后台,核心目标是提升严肃知识问答的准确率。
2、 神策 AI 数据分析师:
业务人员在使用数据时面临三个困境:数据认知门槛高、产品使用门槛高、分析过程复杂,业务洞察要求高。神策 AI 数据分析师的定位不是要取代业务专家,而是成为他们身边最得力的“数据助手”,核心任务是帮助业务专家更快速地提取和整理数据,敏锐地发现数据中的蛛丝马迹,并给出有价值的初步建议。
精准理解用户问题:
能将模糊的业务问题,转化为清晰的数据分析需求;
当用户提出“最近业务不太好,看看怎么回事”这样模糊的问题时,神策 AI 数据分析师能够通过进一步的沟通,明确用户关注的具体业务指标和时间段,从而进行有针对性的分析。
深度理解数据和调用工具:
理解数据的业务语义,同时要在正确的时机正确地调用查询接口,以获取准确的数据。
初步解读数据,并给出建议:
在准确获取数据后,能进行初步解读,发现潜在的洞察,结合业务知识和数据分析结果,为用户提供有价值的建议。,例如,当分析出某产品的销量下降时,AI 分析师可以进一步分析原因,如市场竞争问题、产品质量问题等,并提出相应的改进建议。
神策数据对于 AI 数据分析师分阶段推进。初期采用 Cursor + MCP 方案。这套方案开发成本低,将神策现有的 Open API 封装即可,充分利用了 Cursor 自带的 Claude 等顶尖大模型驱动的多轮对话能力。但拥有局限性,Cursor 终究是为开发者设计的工具,对于业务人员来说,使用门槛较高,难以快速上手。这限制了该方案在业务人员中的推广和应用。
之后,我们转向构建更易用的 WebAgent。为了让神策 AI 数据分析师真正服务于业务人员,我们开发了独立的 Web 交互界面,并构建了一套更完整的 Agent 方案。
Web 交互界面采用简洁直观的设计,符合业务人员的操作习惯,使得他们能够轻松地提出数据分析需求。
仅靠大模型也是不够的,还要打好指标口径、数据语言等基础。我们通过实践,深刻意识到:
大模型(LLM)能力的飞跃是基础:
在生成复杂的 API 查询和复杂 SQL 请求时,过去的大模型可能需要反复尝试和修正才能成功,而现在,只要在提示词(Prompt)中给出清晰的文字描述,并辅以一两个实际的调用示例,顶尖大模型几乎可以一次性生成完全正确的请求,这个进步是构建可靠Agent的关键前提。
指标口径 + 数据语义,是提升问答准确率的关键:
数据表里的诸如 amount,status 等字段的具体含义需要让 AI 知道,才能拼出正确的查询请求。神策的 EU 模型和多实体数据模型,将数据的业务语义沉淀在了系统中,大模型可以自主调用。
每个企业对核心指标的定义都可能不同,同样是计算 GMV,有的用“实付金额”,有的用“订单金额”。如果口径不明确,AI 的回答就可能是错误的,甚至是危险的。神策的“指标平台”可以定义关键的 KPI 指标口径,避免因口径不一致导致的错误分析。
3、 神策 AI 智能运营师:
在强大的 CDP 和策略引擎支持下,我们还需要构建整个智能运营的大脑。包括营销知识库,以及策略设计、优化、创建能力。
具体实现:
基于历史运营数据生成策略模板:
输入:营销人群+目标;
输出:用户特征、触达时间、渠道、优惠方式等粗粒度策略;
通过多臂老虎机算法做灰度测试,验证最优策略。
在引入 AI 后,结合 CDP,最终形成智能运营大脑。随着 CDP 能力和策略发布能力的提升,可助力客户构建更强大的智能运营。
神策数据围绕 AI 的探索,是建立在将神策数据服务的 2500+ 家企业经验变成"可复用的数字智库"的基础上的。我们的下一代产品,将通过知识驱动来实现。神策也将与华为云持续深化合作,以昇腾 AI 赋能数字化用户运营。欢迎更多的伙伴加入到交流和共创的行列中来。
✎✎✎
【更多内容】
▼ 点击“阅读原文”,了解更多神策数据