greedy algorithm DEMO

本文介绍了一种使用Python实现的背包问题解决方案,通过定义不同物品的价值、重量和名称,采用贪心算法策略来最大化背包的价值装载。分别展示了按价值、重量倒数及密度进行排序的选择过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# quote from 'introduction to computation and programming       
# using Python, revised, MIT press 
class Item(object):
    def __init__(self, n, v, w):
        self.name = n
        self.value = float(v)
        self.weight = float(w)
    def getName(self):
        return self.name
    def getValue(self):
        return self.value
    def getWeight(self):
        return self.weight
    def __str__(self):
        result = '<' + self.name + ', ' + str(self.value)\
                 + ', ' + str(self.weight) + '>'
        return result
        
def value(item):
    return item.getValue()
    
def weightInverse(item):
    return 1.0/item.getWeight()
    
def density(item):
    return item.getValue()/item.getWeight()
    
def buildItems():
    names = ['clock', 'painting', 'radio', 'vase', 'book', 'computer']
    values = [175,90,20,50,10,200]
    weights = [10,9,4,2,1,20]
    Items = []
    for i in range(len(values)):
        Items.append(Item(names[i], values[i], weights[i]))
    return Items

def greedy(items, maxWeight, keyFunction):
    """Assumes Items a list, maxWeight >= 0,
         keyFunction maps elements of Items to floats"""
    itemsCopy = sorted(items, key=keyFunction, reverse = True)
    result = []
    totalValue = 0.0
    totalWeight = 0.0
    for i in range(len(itemsCopy)):
        if (totalWeight + itemsCopy[i].getWeight()) <= maxWeight:
            result.append(itemsCopy[i])
            totalWeight += itemsCopy[i].getWeight()
            totalValue += itemsCopy[i].getValue()
    return (result, totalValue)
    
def testGreedy(items, constraint, keyFunction):
    taken, val = greedy(items, constraint, keyFunction)
    print 'Total value of items taken = ', val
    for item in taken:
        print '  ', item
        
def testGreedys(maxWeight = 20):
    items = buildItems()
    print 'Use greedy by value to fill knapsack of size', maxWeight
    testGreedy(items, maxWeight, value)
    
    print '\nUse greedy by weight to fill knapsack of size', maxWeight
    testGreedy(items, maxWeight, weightInverse)
    
    print '\nUse greedy by density to fill knapsack of size', maxWeight
    testGreedy(items, maxWeight, density)
    
testGreedys()


%run "C:\Users\Administrator\test.py"
Use greedy by value to fill knapsack of size 20
Total value of items taken =  200.0
   <computer, 200.0, 20.0>


Use greedy by weight to fill knapsack of size 20
Total value of items taken =  170.0
   <book, 10.0, 1.0>
   <vase, 50.0, 2.0>
   <radio, 20.0, 4.0>
   <painting, 90.0, 9.0>


Use greedy by density to fill knapsack of size 20
Total value of items taken =  255.0
   <vase, 50.0, 2.0>
   <clock, 175.0, 10.0>
   <book, 10.0, 1.0>
   <radio, 20.0, 4.0>




    
    
    
    
    
       
       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值