
语义分割
文章平均质量分 65
Vorüarn0362
研究方向:深度学习、计算机视觉(语义分割、显著目标检测、图像生成)、VLM、遥感图像处理
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【论文讲解】SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
SegFormer是一个简单,高效但强大的语义分割框架,它将Transformer与轻量级MLP解码器统一起来。主要特点: 1)一个新的层次结构的Transformer编码器,它输出多尺度特征。它不需要位置编码,从而避免了位置码的插值,当测试分辨率与训练不同时,会导致性能下降。2)避免了复杂的解码器。所提出的MLP解码器聚合了来自不同层的信息,从而结合了局部注意和全局注意,呈现出强大的表示能力。作者证明,这种简单和轻量级的设计是Transformer高效分割的关键。原创 2023-04-26 16:23:52 · 1821 阅读 · 0 评论 -
swin-unet训练VOC数据集之生成.npz文件
swin-unet训练VOC数据集之生成.npz文件原创 2023-03-20 21:58:14 · 1672 阅读 · 11 评论