Hepatology | 浙大一院方维佳/包暄文团队利用空间单细胞蛋白组联合多组学解析肝内胆管癌的肿瘤免疫微环境

肿瘤微环境(TME)成分的空间结构对于介导癌症患者的治疗反应和生存结果至关重要,但现有研究在肝内胆管细胞癌(iCCA)的TME空间特征方面存在不足。为填补这些空白,浙江大学医学院附属第一医院方维佳/包暄文和中山大学肿瘤防治中心韦玮团队在Hepatology上发表了题为“Spatial Single-cell Proteomics Landscape Decodes the Tumor Microenvironmental Ecosystem of Intrahepatic Cholangiocarcinoma”的文章,借助空间单细胞蛋白组学(IMC)、基于显微切割的空间蛋白组学(LCM-MS)、空间转录组学、多重免疫荧光(mIF)、scRNA-seq等多组学技术从空间角度解析了肝内胆管癌的肿瘤微环境,发现了一类组织残留的M2型巨噬细胞和抗肿瘤CD8+T细胞的互作对于预后不良具有显著相关性,并且还确定了五种不同的空间患者分型,发现其与预后和潜在治疗方案的联系。最后构建了一个TME深度学习模型,用于iCCA的预后预测。

01  空间单细胞蛋白组发现与iCCA预后显著相关的细胞亚型及细胞互作关系

本文中,作者使用了多组学技术对iCCA进行空间数据的获取与整合。首先作者选用了针对上皮、免疫、基质和功能的37种抗体组合对155例患者进行空间单细胞蛋白组检测,共确定了106万个具有空间信息的细胞和13个细胞类型,并针对其中的T细胞和单核/巨噬细胞进行了亚群细化,分别鉴定区分了18和9个亚群,对不同类型细胞的比例进行了区分。

作者进而更加细化地对细胞邻域(CN)进行了定义与分析,共定义了18种CN。根据单因素Cox回归分析结果,iCCA患者中,包含CD163hiM2样组织残留巨噬细胞(RTM)和PD-L1+巨噬细胞的CN13在一年内死亡患者中最广泛存在,说明CN13很可能严重影响了iCCA的抗肿瘤免疫。通过细胞互作分析,作者发现CD163hi M2-like RTM与T细胞群体显著互作,且细胞间距离与预后是显著相关的

02  CD163hi M2 like RTMs通过与抗肿瘤CD8+ T细胞共定位发挥免疫抑制功能

为了进一步探究M2样RTM和T细胞距离与iCCA患者预后相关的背后机制,作者利用单细胞测序分析了6个肿瘤和3个癌旁组织,确定了8个主要亚群。作者发现,M2样TRM表现出CD163和SPP1的高表达,且在肿瘤组织中的存在水平明显高于癌旁组织。借助单细胞测序定义了CD163hi M2 like RTMs的特征基因表达分值,进一步选用内部(bulk蛋白组,N=110)和外部(bulk蛋白组,N=214 & bulk RNA-seq,N=244)两个队列对CD163hiM2 like RTM的丰度与预后的关系进行了探究,验证了高特征基因表达分值的患者生存期短。细胞通讯分析揭示了CD163hiM2 like RTM和CD8+T细胞间的互作机制,M2 like RTM的配体与CD8+T细胞的下游靶基因的表达显著相关,可能通过此途径削弱了其抗肿瘤免疫能力。作者后续还使用利用空间转录组分析了治疗后免疫应答/不应答各2例样本,发现了免疫非应答患者治疗后存在一个同时包含CD163hi M2 like RTMs和CD8+T细胞的簇,而响应患者中并不存在,说明了CD163hi M2 like RTMs和CD8+T的互作有可能与治疗无应答有关。

03  LCM-MS空间蛋白组揭示了不同TME亚型的分子特征及其预后相关性

接下来作者对iCCA患者的TME组成与预后进行了关联研究。无监督聚类识别出5种不同的TME患者亚型。通过生存分析,发现TLS Like high与CD57+上皮细胞high的两个亚型与良好预后相关,其他三种亚型则与较差的预后相关。为探究不同TME亚型的功能特征,作者使用空间单细胞蛋白组指导的样本分型,对组织邻片样本进行LCM-MS空间蛋白组分析,确定了每个TME亚型的关键特征蛋白,通过后续通路富集分析证明了TME分型的准确性(如预后较差的TME亚型血管生成显著增加等)。作者组合了空间单细胞蛋白组和空间蛋白组的数据,发现上皮间充质转化(EMT)活性与CAF细胞含量正相关,炎症情况与粒细胞含量相关,表明不同TME的细胞组成模式显著影响了肿瘤生长、迁移、免疫浸润等。

04  深度学习构建预测模型

作者利用TME特征构建了预后判断模型,发现使用细胞邻域CN17联合Pan-CK的指标即可使模型准确率达到98%以上,且预测准确性显著优于临床病理特征模型,展现了空间TME特征在预测iCCA预后中的关键作用。

总结与讨论

本研究运用空间多组学技术深入剖析iCCA的TME,研究整合空间单细胞蛋白组、空间蛋白质组学、空间转录组学、scRNA-seq等多种技术,发现了TME的空间结构与iCCA患者预后紧密相关,如CD163hi M2 like RTM会抑制抗肿瘤免疫,其与CD8+T细胞的相互作用影响患者生存。通过无监督聚类,研究识别出5种空间亚型,各亚型具有独特的TME特征和预后,为不同亚型患者提供了潜在治疗方案。此外,研究构建了空间TME深度学习系统,通过TME空间特征高精度预测患者预后。本研究为iCCA的精准分类和个性化治疗策略的开发提供了具有重要价值的研究基础。

丨PCF空间单细胞蛋白组学优势

ahhhhhhhhhhhh.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值