一. ⼆叉搜索树的概念
⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树:
若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值
若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点的值
它的左右⼦树也分别为⼆叉搜索树
⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等值,multimap/multiset⽀持插⼊相等值。
这两个就是两个二叉搜索树,不同的是一个可以插入相同的值,一个则是不能插入相同的值。
二.⼆叉搜索树的性能分析
最优情况下,⼆叉搜索树为完全⼆叉树(或者接近完全⼆叉树),其⾼度为: log2 N
最差情况下,⼆叉搜索树退化为单⽀树(或者类似单⽀),其⾼度为: N
所以综合⽽⾔⼆叉搜索树增删查改时间复杂度为: O(N)
那么这样的效率显然是⽆法满⾜我们需求的,我们后续课程需要继续讲解⼆叉搜索树的变形,平衡⼆ 叉搜索树AVL树和红⿊树,才能适⽤于我们在内存中存储和搜索数据。
另外需要说明的是,⼆分查找也可以实现 O(log2 N) 级别的查找效率,但是⼆分查找有两⼤缺陷:
1. 需要存储在⽀持下标随机访问的结构中,并且有序。
2. 插⼊和删除数据效率很低,因为存储在下标随机访问的结构中,插⼊和删除数据⼀般需要挪动数
据。
这⾥也就体现出了平衡⼆叉搜索树的价值。
左边是一颗比较正常的二叉树,它的搜索效率就是logN了,但是右边的搜索效率还是N,这也是搜索树的一个弊端,我们通过后面的学习会解决这个问题,平衡二叉树,这个在后面再说。
三.⼆叉搜索树的插⼊
要按照下面这个规则来进行插入。






四.⼆叉搜索树的查找
1. 从根开始⽐较,查找x,x⽐根的值⼤则往右边⾛查找,x⽐根值⼩则往左边⾛查找。
2. 最多查找⾼度次,⾛到到空,还没找到,这个值不存在。
3. 如果不⽀持插⼊相等的值,找到x即可返回
4. 如果⽀持插⼊相等的值,意味着有多个x存在,⼀般要求查找中序的第⼀个x。如下图,查找3,要找到1的右孩⼦的那个3返回
这个是非常简单的。
发现是没有问题的。
五.⼆叉搜索树的删除
⾸先查找元素是否在⼆叉搜索树中,如果不存在,则返回false。
如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)
1. 要删除结点N左右孩⼦均为空
2. 要删除的结点N左孩⼦位空,右孩⼦结点不为空
3. 要删除的结点N右孩⼦位空,左孩⼦结点不为空
4. 要删除的结点N左右孩⼦结点均不为空
对应以上四种情况的解决⽅案:
1. 把N结点的⽗亲对应孩⼦指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是⼀样的)
2. 把N结点的⽗亲对应孩⼦指针指向N的右孩⼦,直接删除N结点
3. 把N结点的⽗亲对应孩⼦指针指向N的左孩⼦,直接删除N结点
4. ⽆法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点 R(最右结点)或者N右⼦树的值最⼩结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的 位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。
主要分这几种情况,如果是叶子节点的话,就直接删除即可,如果没有左孩子,就直接让右孩子代替自己就行,如果没有右孩子,让左孩子代替自己,如果左右孩子都存在,这时候就是找到自己左子树上的最大值,或者右子树上的最小值来代替自己,这时候不会破坏二叉搜索树的结构。
我们直接先来看最终的代码。
下面我们来讲解一下代码和需要注意的点。
首先我们还是上面几个方法的思路,首先先要找到我们所要删除的节点,然后再进行判断,我们把叶子节点和只有左子树或者右子树的,这些用了两个判断语句来完成,这时候就有需要注意的点了,首先先要判断我们删除的节点是不是根节点,如果是根节点,就直接改变根节点的位置,再删除一下原来的根节点即可,如果不是根节点的话,就判断它是它的父母的左孩子还是右孩子,因为它本身是没有左孩子的,直接让右孩子代替自己的位置就行了,叶子节点也是一样的,没有右孩子也是同理,那么为什么要判断他是不是根节点呢,因为如果是根节点的话这个parent就是空指针了,就会出现空指针的引用,导致程序崩溃了,接下来来讲一下左右孩子都存在的情况,首先我们上面说过,用左子树的最大值或者右子树的最小值来代替,我们上面用的是右孩子的最小值来代替的,我们来看一下,我们让replaceParent指向我们replace的父母节点,replace指向需要换的节点,就是右子树的最左节点,第一个注意的点就是replaceParent要指向cur而不是空,我们来看一下下面这个情况就知道了。
此时,如果我们让replaceParent指向空的话,我们要删除8,此时replace最后就指向了10的位置,我们的replaceParent还是指向空,下面你需要对这个replaceParent解引用呢,此时就会出现空指针引用了,所以必须让它指向cur我们需要删除的节点的位置。
找到replace的位置之后我们的思路是把它和需要删除的节点交换一下,把需要删除的节点交换到最后的位置,把最后一个位置删除一下即可,我们可能正常的思路可能是这样的。
我们认为这个replace是我们replaceParent的左子树了,因为我们找的是右孩子的最小值吗,但是有下面这种情况这样写就会使树结构出现问题了。
还是这个图,当我们在删除8的时候,它的replaceParent指向8,replace指向10,此时replace就是我们的右孩子了,如果让replaceParent的左孩子等于replace的右孩子的话,此时就会出现问题了,此时你的8的左孩子也连接14,,此时就会出现问题了,3的连接就连接不上了,所以我们必须加上那个判定,这样就没有任何问题了,我们来测试一下吧。
我们来运行一下。
此时发现全部删除是没有问题的。
六. ⼆叉搜索树key和key/value使⽤场景
每⼀个关键码key,都有与之对应的值value,value可以任意类型对象。树的结构中(结点)除了需要存储key还要存储对应的value,增/删/查还是以key为关键字⾛⼆叉搜索树的规则进⾏⽐较,可以快速查 找到key对应的value。key/value的搜索场景实现的⼆叉树搜索树⽀持修改,但是不⽀持修改key,修 改key破坏搜索树性质了,可以修改value。
场景1:简单中英互译字典,树的结构中(结点)存储key(英⽂)和vlaue(中⽂),搜索时输⼊英⽂,则同时 查找到了英⽂对应的中⽂。
场景2:商场⽆⼈值守⻋库,⼊⼝进场时扫描⻋牌,记录⻋牌和⼊场时间,出⼝离场时,扫牌,查
找⼊场时间,⽤当前时间-⼊场时间计算出停⻋时⻓,计算出停⻋费⽤,缴费后抬杆,⻋辆离场。
场景3:统计⼀篇⽂章中单词出现的次数,读取⼀个单词,查找单词是否存在,不存在这个说明第⼀次出现,(单词,1),单词存在,则++单词对应的次数。
这个就是给这个搜索树再加一个value变量,让它和key绑定在一块。
主要用下面这两个例子演示一下。
这个是我们修改之后的代码,我们来看两个例子,一个是我们的词典工具,你输入一个英语,它会输出它的汉语,我们来看一下是怎么完成的。
插入了四个单词测试一下。
这样就没问题了,显示的软件肯定不是这样设计的,我们只是讲一种使用的方法。
我们再来看一下第二个场景。
统计这个数组中每个元素出现的个数,也是很好用的,我们来看一下。
我们发现是没有问题的。
七.结束语
感谢大家的查看,希望可以帮助到大家,做的不是太好还请见谅,其中有什么不懂的可以留言询问,我都会一一回答。 感谢大家的一键三连。