2025 年 4 月 14 日,OpenAI 推出 GPT-4.1 系列模型,包括 GPT-4.1、GPT-4.1 mini 和 GPT-4.1 nano。以下是对 GPT-4.1 的深入解析以及它与 GPT-4.0 相比的优势:
GPT-4.1 解析
- 原理:GPT-4.1 基于 Transformer 架构,采用自回归方式生成文本。它通过自注意力机制捕捉输入序列中单词之间的关系,能并行计算整个输入序列,大大加快训练和推理速度。在预训练阶段,模型在大规模未标注文本数据集上进行无监督学习,预测句子中下一个单词的概率,从而掌握自然语言的结构和统计特征。预训练后,会在特定任务数据集上进行微调,以适应具体应用场景。
- 算法:GPT-4.1 的算法主要基于 Transformer 的解码器部分,核心是自注意力机制。该机制计算输入序列中每个词与其他词的重要性权重,从而更好地理解上下文关系。例如,在处理 “我喜欢吃苹果,苹果是一种水果” 这句话时,自注意力机制能明确 “苹果” 在前后文中的不同关联。此外,模型还采用了多头注意力机制,通过多个头的不同表示子空间,更全面地捕捉文本特征。同时,位置编码算法用于给输入序列中的每个位置赋予一个唯一的编码,以解决 Transformer 无法捕捉文本顺序信息的问题。
- 特点
-
- 百万 Token 超长上下文处理:GPT-4.1 系列模型支持高达 100 万个 token 的上下文窗口,是 GPT-4.0 的 8 倍。这意味着模型能处理大型存储库和大量长文档,在处理多份复杂长文档、提取精确信息、进行跨文档推理方面准确性显著提高。例如,在法律审查中,可处理大量法