【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器

MobileViT是一种轻量级、通用且适用于移动设备的视觉Transformer,结合了CNN、Transformer和ViTs的优势。在ImageNet-1k上,它以约600万参数获得了78.4%的top-1准确率,超越了MobileNetv3和DeIT。MobileViT不仅在图像分类中表现出色,还在目标检测等任务中展现出优异性能。文章介绍了MobileViT的基本原理和创新点,并展示了如何将其引入到YOLOv8中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240323100904261

摘要

轻量级卷积神经网络(CNNs)已成为移动视觉任务的事实标准。它们的空间归纳偏差使它们能够跨不同视觉任务学习具有更少参数的表示。然而,这些网络在空间上是局部的。为了学习全局表示,基于自注意力的视觉Transformer(ViTs)已被采纳。与CNNs不同,ViTs是重量级的。在本文中,我们提出以下问题:是否可能结合CNNs和ViTs的优势构建一个轻量级且低延迟的网络用于移动视觉任务?为此,我们介绍了MobileViT,一个面向移动设备的轻量级通用视觉Transformer。MobileViT以不同的视角呈现了使用Transformer进行信息全局处理的方式。我们的结果表明,MobileViT在不同任务和数据集上明显优于基于CNN和ViT的网络。在ImageNet-1k数据集上,MobileViT以约600万参数实现了78.4%的top-1准确率,比MobileNetv3(基于CNN)和DeIT(基于ViT)准确率高出3.2%和6.2%。在MS-COCO目标检测任务中,MobileViT比MobileNetv3准确率高出5.7%,参数数量相近。我们的源代码是开源的,可在以下链接获取:https://github.com/apple/ml-cvnets。

创新点

MobileViT 是一种轻量级、通用且适用于移动设备的视觉Transformer网络

  1. 结合CNN、Transformer和ViTs的优势:MobileViT将CNN的空间局部性特征学习、Transformer的全局自注意力机制以及ViTs的视觉表示学习相结合,充分利用三者的优势,旨在构建轻量级、通用且适用于移动设备的视觉处理网络。
  2. 出色的性能表现:在ImageNet-1k数据集上,MobileViT在参数约为250万时优于MobileNetv2、ShuffleNetv2和MobileNetv3等传统CNNs,甚至比ResNet、DenseNet、EfficientNet等重量级CNNs表现更好。
  3. 通用用途:MobileViT不仅适用于图像分类任务,还在目标检测和语义分割等移动视觉任务中展现出优异的性能,表现出其通用性和多功能性。
  4. 简单且易于优化:与许多ViT变体需要复杂数据增强相比,MobileViT在基本数据增强下表现出更好的性能,易于优化和应用于新任务和数据集中。

MobileViT的创新设计使其成为当前领先的移动视觉处理网络之一,为移动设备上的视觉任务提供了全新的解决方案。

文章链接

论文地址:论文地址

代码地址:代码地址

### 如何在YOLOv8中集成或改进MobileViT #### YOLOv8网络架构分析 YOLOv8是一种先进的实时目标检测框架,其主要由主干网(Backbone)、特征金字塔网络(Neck)以及头部(Detection Head)三部分组成[^1]。其中,主干网负责提取图像中的低层次特征;Neck通过一系列卷积层进一步处理来自Backbone的信息,并将其传递给Head用于最终预测边界框的位置和类别。 #### MobileViT简介 MobileViT作为一种轻量化的视觉Transformer模型,在保持较高精度的同时显著减少了参数数量与计算成本[^4]。该模型结合了局部感知能力较强的传统CNN结构优势及全局建模能力强的特点,非常适合应用于边缘端设备上的高效能需求场景下。 #### 将MobileViT v1集成到YOLOv8 ##### MobileViT v1的网络结构 为了使YOLOv8更加适用于移动平台,可以通过引入MobileViT作为新的骨干网络来替代原有的CSPDarknet53或其他较重的backbones。具体来说: - **输入阶段**:保留原始大小不变; - **中间转换模块**:采用多个堆叠在一起的标准MBConv块构成初始几层; - **核心组件**:随后连接若干组Transformers Layer(即Multi-head Self Attention机制),每组之间穿插着downsampling操作以逐步降低分辨率并增加通道数; - **输出接口**:最后接上几个简单的PW convolutions完成从高级语义空间向特定任务所需表示形式转变的过程。 ##### 集成代码示例 以下是Python环境下基于PyTorch库实现上述过程的一个简化版本片段: ```python from yolov8 import YOLOv8 from mobilevit_v1 import MobileViTv1 class CustomizedYOLO(YOLOv8): def __init__(self, num_classes=80): super().__init__() self.backbone = MobileViTv1() # 替换原有 backbone # 其他初始化逻辑... def forward(self, x): features = self.backbone(x) out = self.neck(features) return self.head(out) if __name__ == "__main__": model = CustomizedYOLO() print(model) ``` 这段代码展示了如何创建一个新的类`CustomizedYOLO`,它继承自标准版YOLOv8并将内部使用的backbone替换成了预定义好的MobileViTv1实例。 ##### 网络替换的效果 实验表明,在相同硬件条件下运行时,经过这样改造后的YOLOv8不仅能够维持甚至略微提高原系统的mAP指标,而还能大幅减少推理时间开销——尤其是在ARM Cortex-A系列处理器驱动下的智能手机和平板电脑等终端产品上面表现尤为明显。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值