【YOLOv8改进 - 卷积Conv】PConv(Pinwheel-shaped Conv): 风车状卷积用于红外小目标检测, 复现!

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例

在这里插入图片描述

介绍

image-20250415223946879

摘要

近年来,基于卷积神经网络(CNN)的方法在红外小目标检测方面取得了卓越的表现。然而,这些方法通常采用标准卷积,忽略了红外小目标像素分布的空间特征。因此,我们提出了一种新型的风车形卷积(PConv),作为替代标准卷积的方式,

### 改进YOLOv8中的Conv层或PConv层 #### 使用PConv替代传统卷积层 为了在YOLOv8中实现更高效的性能,可以考虑采用部分卷积(PConv),其设计旨在减少计算量并加速处理过程而不牺牲太多精度。研究表明,在引入点卷积之后,PConv能更加贴近标准卷积操作的表现,从而维持良好的空间特性抽取能力的同时大幅提升了运算效能[^2]。 ```python import torch.nn as nn class PartialConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) def forward(self, x): return self.conv(x) ``` #### 替换Bottleneck模块内的卷积单元 具体来说,可以在YOLOv8架构里的瓶颈(Bottleneck)组件里用PConv取代原有的某些全连接卷积层。这一改动不仅有助于保持原有模型识别物体的能力,而且还能加快预测阶段的速度。实验证明这种方法确实可行,并为实时目标检测系统的优化开辟了一条新路径[^4]。 ```python from yolov8.models.common import Bottleneck def modify_bottlenecks(model): for m in model.modules(): if isinstance(m, Bottleneck): # Replace the conv layer with PConv m.cv1 = PartialConv(m.cv1.in_channels, m.cv1.out_channels) m.cv2 = PartialConv(m.cv2.in_channels, m.cv2.out_channels) ``` #### 结合ScConv增强C2f模块功能 除了上述措施外,还可以借鉴ScConv的思想对YOLOv8内部的C2f部件做出调整。这样做不仅可以改善整体框架对于复杂场景的理解力,还可能带来额外的性能增益。文中给出了完整的代码片段以及详细的指导说明以便读者理解实施这些变化[^3]。 ```yaml # Example of modified configuration file (yolov10n_C2f_ScConv.yaml) backbone: ... neck: csp2: C2fWithScConv # Use ScConv enhanced version here ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值