各位技术宅们,今天咱们要掀开机器翻译的底裤,看看那些让AI突然开挂说八国语言的"黑魔法"。想象一下,十年前你用的翻译软件能把"how are you"翻译成"怎么是你",现在DeepL已经能翻译十四行诗了,这中间到底发生了什么?咱们这就来拆解神经机器翻译的三板斧——Seq2Seq、Attention和Transformer,保证让你看完感觉自己能徒手搓个翻译AI!
一、Seq2Seq模型:快递站的包裹分拣大法
先来认识下神经机器翻译的初代目:Seq2Seq模型。这玩意儿就像个跨国快递中转站,专门处理语言包裹的拆包-打包业务。
编码器(Encoder)的工作日常:
- 收到中文包裹"我爱机器学习",先拆成单个字:我/爱/机/器/学/习
- 用LSTM(长短期记忆网络)打包成压缩文件,就像把散装乐高拼成完整模型
- 生成一个终极密码箱——上下文向量(Context Vector),尺寸固定为512维(相当于把整个句子塞进火柴盒)
解码器(Decoder)的骚操作:
- 抱着那个512维的火柴盒开始脑补英文句子
- 每次吐一个单词就像玩"你画我猜":根据前一个单词预测下一个
- 生成"I"→预测"love"→接着猜"machi