【2025算法面试通关】【一.数学基础-微积分与优化】【9.微积分与优化高级面试题及答案:随机优化算法与策略梯度定理】

在这里插入图片描述

一、热门面试题(随机优化算法)

1. 随机优化算法基础

Q1:什么是随机梯度下降(SGD)?它与批量梯度下降(BGD)的核心区别是什么?
A1:SGD每次迭代使用单个样本计算梯度,而BGD使用全部样本。SGD的方差高但计算速度快,适用于大规模数据;BGD梯度准确但计算成本高。

Q2:Adam算法的核心思想是什么?结合了哪些优化方法的优点?
A2:Adam结合动量(Momentum)和自适应学习率(RMSprop),通过一阶矩估计(均值)和二阶矩估计(方差)动态调整学习率,适用于非平稳目标函数。

Q3:写出Adam算法的参数更新公式,并解释各超参数(α, β₁, β₂, ε)的作用。
A3

  • 一阶矩估计:( m_t = \beta_1 m_{t-1} + (1-\beta_1)g_t )
  • 二阶矩估计:( v_t = \beta_2 v_{t-1} + (1-\beta_2)g_t^2 )
  • 偏差修正:( \hat{m}_t = m_t / (1-\beta_1^t), \hat{v}_t = v_t / (1-\b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值