第一部分:霍夫变换检测直线的投票机制(50题)
一、基础概念题(10题)
-
什么是霍夫变换(Hough Transform)?其核心思想是什么?
答:霍夫变换是一种将图像空间中的曲线检测问题转换为参数空间投票的特征检测算法,核心思想是通过投票机制在参数空间中寻找峰值,从而确定图像中是否存在特定形状(如直线、圆等)。 -
霍夫变换检测直线时,为什么采用极坐标方程 ( \rho = x\cos\theta + y\sin\theta ) 而非笛卡尔坐标 ( y=kx+b )?
答:笛卡尔坐标在处理垂直直线(斜率无穷大)时存在参数溢出问题,而极坐标方程能统一表示所有方向的直线,避免了斜率无穷大的情况,且便于离散化参数空间。 -
霍夫变换的“投票机制”具体指什么?
答:对于图像中每个边缘点 ((x,y)),在参数空间 ((\rho,\theta)) 中生成所有可能经过该点的直线参数,并在对应的累加器数组中计数(投票),最终累加值高的参数对应图像中的直线。 -
霍夫变换的参数空间(累加器数组)如何构建?其维度和分辨率由什么决定?
答:参数空间是二维数组 (