读《针对复杂环境的模块化栅格地图构建算法》一文的总结与思考

摘 要:针对煤矿灾害救灾与信息探测机器人的自主导航问题,提出了一种用模块化的
局部栅格地图表示复杂三维环境的地图构建算法。该算法使用TOF 相机对三维环境信息
进行获取,形成三维点云坐标矩阵。通过对坐标阵中每个点进行计算,判断坐标点在局
部栅格地图中的位置,创建新的局部栅格地图,并对栅格单元占据概率进行实时更新,
创建完整的全局环境栅格地图。根据栅格单元中坐标点的密度,对障碍物进行类型划分,
确定通行区域与不可通行区域,简化路径规划的算法。实验结果和数据分析证明了本文
地图构建方法的有效性和实用性。

可知此文是针对煤矿灾难救灾机器人的占据栅格地图构建算法,与自动驾驶的交通场景不同,而且传感器用的是TOF相机,而非激光雷达。自动驾驶场景是一个复杂的、开放的、高动态场景,车辆高速行驶且周围的栅格的占据状态实时变化,而且自车也只需要知道自己周围的近距离栅格地图,不需要也不可能得到全场景地图。而煤矿灾难场景则是几乎封闭的、低动态场景,全局栅格状态变化不多,机器人可以得到全场景地图;车载激光雷达得到的点云随距离增大而稀疏,但TOF相机基本没有这个特点。因此有些方法不可直接采用,但大致思路可以借鉴。故写下这篇笔记。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值