第九天:经典的卷积神经网络

本文介绍了卷积神经网络的基本结构及应用,包括图像分割、目标检测等计算机视觉任务,并概述了AlexNet、VGG、GoogLeNet和ResNet等经典模型的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

第九天:经典的卷积神经网络

**
卷积神经网路的一般结构:
1.卷积层+激活曾和池化层的组合多次出现 提取特征
2.多个全连接或者特殊的CNN结构作为输出层 作分类器或检测器或分割器
计算机视觉主要任务:图像分割,目标检测,图像语义分割,图像实例分割
CIFAR-10数据集
imagenet数据集
经典CNN
在这里插入图片描述
在这里插入图片描述
AlexNet:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

VGG

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Googlenet:
在这里插入图片描述
1*1的卷积核主要用于改变通道数,当从卷积层到第一个全连接层的时候数据量是最大的,featuremap是个立方体,
ResNet:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值