paddle的两阶段基础算法基础

本文详细介绍Paddle框架下的两阶段目标检测算法发展历程,解析Faster R-CNN原理,并通过PaddleDetection实战演练加深理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

paddle的两阶段基础算法详解与实践

**
有三部分分别是:
1,两阶段算法发展历程
2,Faster R-CNN原理解析
3,Paddle Detection实战演练
一:两阶段算法的发展历程
在这里插入图片描述
目标检测一开始会通过传统的图像特征来分类图片等,2012之后加入了深度学习大发展,2014年将深度学习运用于机器学习,机器视觉之中。
R-CNN详解:
运作步骤:
在这里插入图片描述
用传统的特征HOG/Haar进行特征提取,再用机器学习进行分类。而R-CNN是最早将深度学习和目标检测结合在一起的。
在这里插入图片描述
R-CNN的网络结构:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从图中可以看出R-CNN的结果明显超过了传统的DPM特征那个方法。
R-CNN的不足:1,计算量大:主要表现在需要经卷积神经网络的次数比较庞大。2,基于传统的图像,所提取的区域质量会较差3,分模块训练,没有联合起来进行运作耗时变长。
如何解决R-CNN的不足:
在这里插入图片描述
fast R-CNN与R-CNN比较:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值