5-Oracle 23ai True Cache&ADG &In-Memory对比和选择

一、单个特性拿出来都很能打

Oracle Database 23ai 重要的新特性 True Cache,当遇见此前在EXADATA上深度使用的In-Memory、落在寻常百姓家的ADG,甚至去和ElasticSearch、Redis一众在应用背后,数据库之前,扛下很多流量的他们,如何选择?

二、功能区别列表

Oracle Database 23ai 中 True Cache、In-Memory 和 Active Data Guard (ADG) 三者均来自于Oracle中重要的特性,结合其技术特性与定位总结:

特性

True Cache

In-Memory

Active Data Guard (ADG)

定位

中间层全功能只读缓存

主库内存列式加速引擎

高可用灾备 + 只读负载分流

数据一致性

事务级一致(亚秒级延迟)

与主库行式数据实时一致

与主库物理一致(实时日志应用)

存储形式

内存中行式存储(无磁盘数据文件)

内存中列式存储(双格式架构)

磁盘存储 + 可选内存缓存(需独立实例)

功能支持

完整 SQL/JSON/Graph 查询

优化分析型扫描、聚合类查询

只读查询(部分分析受限)

部署拓扑

可分布式部署

仅限主库或 ADG 备库内部

独立物理备库实例

数据更新机制

Redo Apply 同步(类 ADG)

主库事务直接更新

Redo Apply 同步

资源消耗

低磁盘占用(仅日志文件)

占用主库 SGA 内存

完整实例资源(CPU/内存/存储)

三、底层技术相通处

  1. True Cache 本质是 ​无盘的 ADG 物理备库,复用 ADG 的 Redo Apply 机制实现数据同步,数据存于内存单独做出了低延迟缓存设计。二者共享日志传输、依赖于日志的传输、数据一致性保障等核心架构。
  2. In-Memory 在 ADG 上的扩展 ADG 备库可启用 ​In-Memory 选件,将列式存储应用于备库,分担主库分析压力(如报表查询)。在企业大部分使用场景中 ADG 同时具数据的备灾备份与只读查询和内存加速能力。
  3. True Cache 与 In-Memory 的互补性 True Cache 通过block级别的快速复制和应用,解决物理距离与连接扩展 问题(例如边缘计算、数据全球部署); In-Memory 优化 主库本地分析性能(如实时聚合); 二者均可卸载主库负载,适用场景又各有不同(网络延迟 、 计算密集型等各种情况)

三、应用场景

True Cache 适用场景
  • 低延迟读访问:用户会话存储、实时业务的排行、身份认证(微秒级响应)。
  • 地理分布式架构:数据主权合规(如 GDPR),边缘节点就近读取。数据全球或是跨地域部署的快速读取。
  • 高并发读分流:大型系统ITEM或是BOM目录浏览、业务信息推送等读密集型业务。
  • 透明缓存集成
特点:无需改造应用,通过 JDBC 驱动自动路由只读请求。
In-Memory 适用场景
  • 实时分析混合负载(HTAP):在 OLTP 库上直接运行分析查询(如即时报表)。
  • 聚合/扫描优化:大表过滤(where)、列投影(少量列访问)、星型连接查询。
  • 压缩加速场景:内存列式压缩提升扫描效率,同时减少磁盘索引依赖。
  • 自治数据库加速
特点:Oracle Autonomous Database 自治数据库中透明启用内存加速。
ADG 适用场景
  • 核心高可用与容灾:RTO/RPO 趋近零的故障切换(制造业7*24,金融核心系统)。
  • 只读负载隔离:报表库、BI 查询专用备库,避免影响主库交易性能。
  • 滚动升级与备份:在备库执行备份/升级测试,减少主库停机窗口。
  • 地理冗余:跨数据中心部署灾备节点(配合 Data Guard Broker)。
ADG在自11g以后的OCM考试中必考,从前是大名鼎鼎的DataGuard,12c以后的版本有更新的特性Active特性,名字变成ADG。企业级应用场景中必备RAC+ADG,ADG作为11g以来的OCM考试必备,很多人会在这里掉下来,四场考试中最惊心动魄的一场。

四、使用建议

  • 需亚秒级近端缓存 → True Cache(例如全国--省--地市,或是跨国公司全球应用加速);
  • 需主库分析加速 → In-Memory(例如混合 HTAP 负载);
  • 需灾备、配合RAC + 只读扩展 → ADG(例如金融容灾+报表分离);
  • 场景:ADG 备库启用 In-Memory 实现灾备与分析加速;True Cache 扩展 ADG 的只读能力至边缘侧。
TIPS:True Cache 是 23ai 的创新特性,将 ADG 的灾备能力转化为轻量级缓存层;In-Memory 持续增强 HTAP 支持;ADG 仍企业级最基础也最为实用高可靠高可用方案。三者可组合构建多层次数据架构。

五、展开想象,既有True Cache,和ES、Redis如何对标

维度

Oracle TrueCache

Redis

Elasticsearch

本质

数据库中间层只读缓存 (基于 ADG 技术)

内存键值存储 + 数据结构服务

分布式搜索与分析引擎 (基于 Lucene)

数据一致性

事务级强一致 (亚秒级同步主库 Redo)

最终一致 (主从异步复制) 或弱一致

最终一致 (近实时刷新机制)

查询能力

完整 SQL/JSON/Graph 查询

键值操作 + 扩展模块 (如 RedisSearch)

全文检索 + 聚合分析 + 复杂 DSL 查询

存储结构

内存行式存储 (无磁盘数据文件)

内存数据结构 (字符串/哈希/列表等)

磁盘存储 + 内存缓存 (倒排索引 + DocValues)

扩展性

自动负载均衡 (Uniform/分区部署)

集群分片需手动配置 (Redis Cluster)

原生分布式分片 (自动数据分布)

六、技术差异点与协同场景

Redis 适用场景
  • 会话管理:用户登录状态存储(低延迟读写);
  • 消息队列:Streams 数据结构实现异步任务;
  • 实时排行榜:Sorted Set 结构更新典型业务的累计,多次违规或是积分。
Elastic search 适用场景
  • 日志分析:ELK Stack 处理 TB 级日志(例如错误追踪);
  • 全文搜索:大型系统中产品多字段检索(例如“感冒 药品 日期”);
  • 聚合分析:用户或是企业行为画像(例如某一类手术、某一款工具和耗材的多次使用)
  1. True Cache 与 Redis 的互补性
  • True Cache:卸载数据库关联型查询(如多表 JOIN),保证 SQL 兼容性与事务一致性;
  • Redis:处理高频键值操作(如会话存储、实时计数器),支持丰富数据结构;
  • 协同示例:大型高频交易系统中,True Cache 缓存Item物料关系数据,Redis 存储用户钱包业务购物车等。
  1. Elasticsearch 与 Redis/True Cache 的分工
  • Elasticsearch:专注文本搜索/日志分析(例如日志聚合、模糊匹配);
  • Redis/True Cache:服务低延迟数据访问(例如实时查询、事务处理);
  • 协同示例:用户行为日志先写入 Elasticsearch 分析,结果摘要缓存到 Redis 供实时展示。
  1. True Cache 与 Elasticsearch 的替代性
两者均支持只读查询,但适用场景不同:
  • TrueCache 替代 Oracle 只读副本,减少主库负载;
  • Elasticsearch 替代 关系型数据库复杂查询(如全文检索)。
回到原点:Redis 是通用内存存储,Elasticsearch 是搜索引擎。三者定位互补,可协同构建高性能数据架构——True Cache 优化数据库负载,Redis 支撑应用层状态管理,Elasticsearch 解决复杂检索问题。TrueCache + Redis:OLTP 系统分层缓存(关系型+键值);Elasticsearch + Redis:搜索分析+结果缓存。
True Cache 是 Oracle 生态的专用缓存新特性,结合Oracle核心特性RAC、ADG、ASM、 分布式文件系统等形成短时间内业界难以挑战的护城河。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值