12-Oracle 23ai Vector 使用ONNX模型生成向量嵌入

一、Oracle 23ai Vector Embeddings 核心概念

向量嵌入(Vector Embeddings)​​

-- 将非结构化数据(文本/图像)转换为数值向量

- - 捕获数据的语义含义而非原始内容

- 示例:"数据库" → [0.24, -0.78, 0.56, ...]

​ONNX(Open Neural Network Exchange)​​

- 开放神经网络交换格式

- 实现跨框架模型互操作(PyTorch → TensorFlow → Oracle)

- Oracle 23ai 原生支持 ONNX 模型部署

​生成方式

可使用内置,也可以使用外部的第三方API

二、关于Vector Generator

FLOAT32 Vector Generator,BINARY Vector Generator
不建议在生产数据库上使用矢量生成器。本教程可用于测试和 演示目的。

​三、环境准备(基于Oracle 23ai Free版,安装模式参考前文)

8-Oracle23 ai free True Cache OL9.6上部署和实操-已验证-CSDN博客
  1. 环境限制
  • CPU:最大 2 核
  • 数据量:≤ 12 GB
  • 内存:≤ 2 GB
  • 单实例限制:每主机仅允许一个实例

四、准备ONNX模型

  • ​步骤1:下载预训练模型​

 传输模型到服务器​,本地服务器​:复制到数据库可访问目录

[root@OL96 home]# unzip all_MiniLM_L12_v2_augmented.zip
Archive:  all_MiniLM_L12_v2_augmented.zip
  inflating: all_MiniLM_L12_v2.onnx
  inflating: README-ALL_MINILM_L12_V2-augmented.txt
[root@OL96 home]# ll
total 1618196
drwx------. 14 admin  admin          4096 Jun  2 22:54 admin
-rw-r--r--.  1 root   root      122597346 Jul 16  2024 all_MiniLM_L12_v2_augmented.zip
-rw-r--r--.  1 root   root      133322334 Jul 15  2024 all_MiniLM_L12_v2.onnx
drwx------.  4 oracle oinstall        143 Jun  3 18:56 oracle
-rw-r--r--.  1 root   root     1401096996 May  6 18:50 oracle-database-free-23ai-23.8-1.el9.x86_64.rpm
-rw-r--r--.  1 root   root           4232 Jul 15  2024 README-ALL_MINILM_L12_V2-augmented.txt
cp all_MiniLM_L12_v2.onnx /opt/oracle/models/
步骤2:数据库环境配置
  • 创建专用用户和目录
  • DB_DEVELOPER_ROLE是Oracle 23ai引入的新角色,整合了CONNECT和RESOURCE角色,并增加了更多现代开发所需的权限,比如创建多维数据模型、机器学习模型
su - oracle
sqlplus / as sysdba
alter session set container=FREEPDB1;
CREATE TABLESPACE vec_ts DATAFILE 'vector_ts.dbf' SIZE 2G AUTOEXTEND ON;
CREATE USER vector_user IDENTIFIED BY Oracle_4U DEFAULT TABLESPACE vec_ts;
GRANT DB_DEVELOPER_ROLE TO vector_user;

CREATE OR REPLACE DIRECTORY MODEL_DIR AS '/opt/oracle/models/';
GRANT READ, WRITE ON DIRECTORY MODEL_DIR TO vector_user;
步骤3:加载ONNX模型到数据库​

连接创建的用户,并导入嵌入模型到数据库中。

DBMS_VECTOR.LOAD_ONNX_MODEL 是Oracle提供的存储过程,用于加载ONNX格式的机器学习模型,可以通过这个存储导入嵌入模型到数据库中。

SYS@FREE> show pdbs;

    CON_ID CON_NAME                       OPEN MODE  RESTRICTED
---------- ------------------------------ ---------- ----------
         3 FREEPDB1                       READ WRITE NO
SYS@FREE> col algorithm for a50
SYS@FREE> aol mining_funtion for a50
SYS@FREE> col mining_funtion for a50
select model_name, algorithm, mining_function from user_mining_models where model_name = 'ALL_MINILM_L12_V2';
未选定行
SYS@FREE> !ls -lrht /opt/oracle/models
总用量 128M
-rw-r--r--. 1 root root 128M  6月  6 13:33 all_MiniLM_L12_v2.onnx
SYS@FREE> SET SERVEROUTPUT ON;
begin
  2    dbms_vector.drop_onnx_model (
  3      model_name => 'ALL_MINILM_L12_V2',
  4      force => true);
  5    dbms_vector.load_onnx_model (
  6      directory  => 'MODEL_DIR',
  7      file_name  => 'all_MiniLM_L12_v2.onnx',
  8      model_name => 'ALL_MINILM_L12_V2');
  9  end;
 10  /

PL/SQL 过程已成功完成。
SYS@FREE> SET SERVEROUTPUT OFF;
SYS@FREE> select model_name, algorithm, mining_function from user_mining_models where model_name = 'ALL_MINILM_L12_V2';

MODEL_NAME
------------------------------------------------------------------------------------------------------------------------
ALGORITHM                                          MINING_FUNCTION
-------------------------------------------------- ------------------------------
ALL_MINILM_L12_V2
ONNX                                               EMBEDDING
参数说明:

dbms_vector.drop_onnx_model :删除数据库中的同名模型。

dbms_vector.load_onnx_model :加载ONNX格式的机器学习模型。

directory => 'model_dir':指定数据库目录对象(Directory Object),需提前创建并授权访问。

file_name => 'all_MiniLM_L12_v2.onnx':模型文件名。

model_name => 'ALL_MINILM_L12_V2':模型在数据库中的注册名称。

步骤4. 验证使用数据库中的embedding模型的有效性

可以通过VECTOR_EMBEDDING调用嵌入模型将非结构化文本转换为高维向量,用于支持语义相似性搜索。

VECTOR_EMBEDDING 函数语法结构:

VECTOR_EMBEDDING ( [ schema.] model_name USING mining_attribute_clause )

SYS@FREE>  SELECT VECTOR_EMBEDDING(ALL_MINILM_L12_V2 USING 'test模型向量化的有效性' as DATA) AS embedding;

EMBEDDING
------------------------------------------------------------------------------------------------------------------------
[2.66404985E-003,9.65440422E-002,-1.35087622E-002,-5.54944314E-002,

SYS@FREE> set linesize 300
SYS@FREE> set pagesize 300
SYS@FREE> set long 1000000
SYS@FREE> select model_name, algorithm, mining_function from user_mining_models where model_name = 'ALL_MINILM_L12_V2';

MODEL_NAME                                                                                                                       ALGORITHM                                           MINING_FUNCTION
-------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------- ------------------------------
ALL_MINILM_L12_V2                                                                                                                ONNX       EMBEDDING

SYS@FREE>  SELECT VECTOR_EMBEDDING(ALL_MINILM_L12_V2 USING 'test模型向量化的有效性' as DATA) AS embedding;

EMBEDDING
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[2.66404985E-003,9.65440422E-002,-1.35087622E-002,-5.54944314E-002,-4.43398356E-002,2.62922514E-002,2.59053931E-002,-7.91817252E-003,-9.61533338E-002,-5.10287704E-003,9.70973819E-002,-4.75466549E-002,9.48436558E-002,-2.00812109E-002,-1.11816991E-002,3.50039313E-003,2.49711871E-002,-4.08663116E-002,-
1.09921098E-002,1.97709594E-002,-4.39038612E-002,-1.07046172E-001,3.40610854E-002,1.17250914E-002,-7.20420256E-002,-4.8628971E-003,4.66601141E-002,-6.6996634E-002,1.15193594E-002,-1.86132006E-002,6.65622903E-003,1.11891717E-001,2.63250824E-002,-3.45257223E-002,2.68428884E-002,-1.63987558E-002,-2.753
36318E-002,-4.55752388E-002,3.59995365E-002,-2.89271609E-003,1.96910854E-002,-1.21251133E-003,1.0335011E-001,4.18214463E-002,6.89237565E-002,5.2454304E-002,6.04937077E-002,-6.6135779E-002,-9.3136644E-003,-3.22942957E-002,-5.8344584E-002,-3.99274416E-002,8.9949511E-002,9.88921244E-003,-2.11505666E-00

五、生成向量嵌入的SQL实操

​场景1:文本转向量​
-- 创建测试表
CREATE TABLE testdocs (
  id NUMBER PRIMARY KEY,
  content CLOB
);

INSERT INTO testdocs VALUES (1, 'Oracle AI Vector Search revolutionizes data querying');
INSERT INTO testdocs VALUES (2, '机器学习模型需要高质量的数据嵌入');

-- 生成向量嵌入
ALTER TABLE testdocs ADD (embedding VECTOR(384));

UPDATE testdocs d
SET embedding = VECTOR_EMBEDDING(
  MINILM_MODEL USING d.content
);

 场景2:相似性搜索​

SELECT id, content, 
       VECTOR_DISTANCE(
         embedding, 
         VECTOR_EMBEDDING(MINILM_MODEL USING 'AI data processing'),
         COSINE
       ) AS similarity
FROM testdocs
ORDER BY similarity DESC;



--   --------------------------------------   ----------
1    Oracle AI Vector Search...                0.872
2    机器学习模型...                           0.215

、常见错误解决方案

  • ORA-40200:模型加载失败
    -- 检查模型访问权限
    SELECT directory_path 
    FROM ALL_DIRECTORIES 
    WHERE directory_name = 'MODEL_DIR';
    
    
    chmod -R 755 /opt/oracle/models
    • ORA-56904:向量维度不匹配
    • 修复​:调整表列定义 VECTOR(384)
    -- 检查模型输出维度
    SELECT vector_dimension 
    FROM USER_VECTOR_MODELS 
    WHERE model_name = 'ALL_MINILM_L12_V2';
    • CPU资源超限优化​:限制并发请求数 
    -- 监控资源使用
    SELECT * FROM VECTOR_RESOURCE_USAGE;

     ​TIPS:所有操作需在Oracle 23ai Free版限制内进行,建议生产环境使用企业版突破资源限制。此次实现Oracle 23ai的向量嵌入功能,将非结构化数据转化为可分析的语义向量,为AI搜索和分析奠定基础。 

    ### 配置 Oracle 23c AI 功能的方法 为了启用和配置 Oracle 23c 中的 AI 功能,需要遵循一系列操作流程。以下是关于如何配置这些功能的具体说明: #### 1. 安装 Oracle 23c 数据库 在开始之前,确保已成功安装 Oracle 23c 数据库。可以通过以下命令完成 CentOS 上的安装[^3]: ```bash dnf -y install oracle-database-free-23c-1.0-1.el8.x86_64.rpm ``` #### 2. 启用生成AI 支持 Oracle 23c 提供了对生成AI 的支持,允许开发者通过机器学习算法自动生成数据[^4]。要激活这一功能,需执行以下 SQL 脚本以加载必要的组件: ```sql BEGIN DBMS_GENERATIVE_AI.INITIALIZE; END; / ``` 上述脚本会初始化生成AI 所需的基础环境。 #### 3. 创建用于 AI 计算的数据表空间 由于 AI 应用通常涉及大量计算密集型任务,因此建议为 AI 特定工作负载分配独立的数据表空间。可以使用如下语句创建专用表空间: ```sql CREATE TABLESPACE AISPACE DATAFILE '/path/to/aispace.dbf' SIZE 1G AUTOEXTEND ON NEXT 512M MAXSIZE UNLIMITED; ``` #### 4. 加载预训练模型或导入矢量数据 如果计划利用 AI 矢量搜索功能,则需要先加载预先训练好的模型或将目标对象转换成向量形式并存入数据库中[^1]。例如,对于一组图片文件,可运行类似下面的操作将其嵌入数据库里: ```sql DECLARE v_image_vector BLOB; BEGIN -- 假设这里有一个函数 IMAGE_TO_VECTOR 将图像转为特征向量 SELECT IMAGE_TO_VECTOR('image.jpg') INTO v_image_vector FROM DUAL; INSERT INTO image_vectors (id, vector_data) VALUES ('img1', v_image_vector); END; / ``` #### 5. 构建索引加速查询性能 针对存储于数据库中的高维向量集合构建高效的近似最近邻(ANN)索引来提升检索速度是非常重要的一步。可通过调用 `DBMS_INDEXING` 包实现这一点: ```sql EXECUTE DBMS_INDEXING.CREATE_ANNOY_INDEX('IMAGE_VECTORS', 'VECTOR_DATA'); ``` 以上步骤涵盖了从基础设置到高级特性的整个过程,从而充分利用 Oracle 23c 的强大 AI 功能。 ---
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值