自抗扰控制(ADRC)代替积分消静差,快准狠!

最近在实操弹的姿态控制律设计,小扰动线性化将非线性方程转化成线性方程,然后采用比例+积分+角速度反馈的双回路过载跟踪控制结构(也可以把伪攻角反馈加进去,形成三回路控制结构),利用根轨迹法整定控制参数。加积分的目的是为了消除静差,但就是有点慢。后续考虑使用自抗扰控制理论的扩张状态观测器(ESO)对干扰和误差进行估计,并实时补偿,根据以往的经验,ESO的加入会使得系统的刚度大大增强,可以快速消除系统受到的各种干扰,避免了积分消静差的煎熬。

扩张状态观测器是由我国著名控制专家韩京清教授于20世纪90年代提出来的。ESO的核心思想在于将系统的内部不确定项和外部干扰视为总扰动,然后把这个总扰动扩张为一个新的状态变量,继续针对扩维后的新系统设计状态观测器对新系统的状态进行估计,这里面就包含了对新状态―总扰动的估计。由于状态观测器实时性好,可在线估计总扰动,并且不要求知道总扰动的内部动力学特性,所以ESO可以在线高效地估计总扰动。正是因为对系统模型信息依赖程度小,可实时在线计算等优点,ESO在化工控制,机器人,运动控制,航空航天等领域都取得了成功的应用。

尽管ESO已经在许多的场合取得了成功的应用,但是在一些特定的场景中,ESO的性能还不能满足要求。例如,用于陀螺标定的单轴伺服转台控制系统,单轴位置速率转台被放置于温箱中,转台转轴和温箱通孔之间有摩擦。尤其是温箱为了保温,防止气体泄漏,温箱的通孔周围铺有毛毡等材料,它产生的摩擦力矩对转台的性能影响较大。另一方面,由于转台的加工误差和温箱的放置误差,导致转台转轴和温箱之间的距离不是一样大的,因此,转台在转动的时候,各点所受的摩擦力矩是不一样的。而传统的ESO在设计时,将总扰动视为常值或者是慢变的量,故总扰动的导数为零。在估计时变扰动的时候,这种处理方式阻碍了ESO性能的进一步提升。日本学者大西一公提出的干扰观测器(DOB)也存在类似的问题。

ESO最伟大的突破在于将作用于系统上的各种未知信息,包括内部的和外部的,统统视为总扰动,不再有内部和外部之分,然后再把这个总扰动扩张成一个新的状态变量。至于后面的状态观测器设计方法,则是仁者见仁智者见智。

这里借鉴韩老师提出的ESO设计思想,把作用于系统的各种未知信息视为总扰动,并将其扩张为一个新的状态变量。但是针对扩维后的系统,则采用输出估计误差的非线性项与切换项之和的方式反馈给状态观测器,进行形成滑模扩张状态观测器,即sliding mode extended state observer (SMESO)。SMESO同时兼有ESO和滑模观测器的优点,即既可以估计总扰动,也可以加快干扰的收敛速度。

可能有人会问这么一个问题,针对时变的干扰,可以增大ESO的增益来获得满意的干扰估计效果。但是,当系统的输出存在测量噪声时,高增益会带来测量噪声的放大问题。而SMESO主要是靠滑模切换性来对付时变的干扰,它的主体部分的增益系数并不大,这样SMESO对测量噪声的放大效果就要弱于ESO,这也是SMESO的一个特点。

被控对象的数学模型为

d为总扰动。把d扩张成新的状态变量x3,则上面的二阶系统可以写成三阶,

SMESO可设计为

仿真效果图

自抗扰控制理论已经在很多的实际工程领域取得了良好的控制效果,实践是检验真理的唯一标准!

这次装修买热水器,某东平台上看到了一款产品,上面写着ADRC 2.0恒温算法,联想到之前在ESO方面的成功实践,毫不犹豫就下单了。

期待这次在弹的姿态控制律设计中,ADRC也能大放异彩,拭目以待吧!

有需要SMESO Matlab代码的小伙伴,通过网盘分享的文件下载:SMESO使用说明.txt等2个文件
链接: https://pan.baidu.com/s/1SPpbGEoJLt3mWQD9RWIQMQ 提取码: XGNC。

最后一张图片来源于某东平台,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值