stable-diffusion-3-medium (SD3)模型下载

 

由于huggingface.co下载速度不佳,放在夸克网盘上了:

夸克网盘分享

有条件的可以从huggingface下载:

https://huggingface.co/stabilityai/stable-diffusion-3-medium/tree/main

Stable Diffusion 3 Medium 是基于 OpenAI 的扩散模型理论基础之上发展的人工智能模型。它通过模拟自然扩散过程来生成高质量、分辨率以及细节丰富的图像。从大数据训练中,Stable Diffusion 3 Medium 展示了颠覆性的性能及广泛应用潜力。

## 性能与优势

1. **高质量图像生成:** 利用精炼的算法,生成图像的质量极大提升,色彩真实、细节丰富。

2. **效率优越:** 在计算上更加高效,生成速度较之前代模型大幅度提高。

3. **适用范围广泛:** 可用于多种场景如广告设计、影视特效、医学图像分析等。

## 工作原理

Stable Diffusion 运用了降噪扩散整合采样“一次生成即逼真”,通过引导天然地噪声信号从模糊图像中获取逐次积累的细节,逐渐减少随机噪声以重建原始高分辨率图像。

## 应用实例

1. **虚拟服装试穿:** 消费者能根据自己的照片来试穿各种网络上出售的衣服,实现虚拟购物体验。

2. **医疗影像:** 高精度生成分辨率更高的医学影像,有助于医生成更精准的诊断。

3. **内容创作者:** 设计师和内容创作者能够更加便捷地生成所需的图像,大大提升工作效率。

## 总结 Stable Diffusion 3 Medium 是当前的顶尖扩散模型,以高效和高质量的图像生成在一定范围内进行稳定扩散。其广泛的应用前景无疑将助益各行业的数字化转型,提升工作效率和创造力。

对Stable Diffusion 3 Medium 感兴趣的个人或机构,可进一步深入研究其应用与开发潜力,为未来的创新提供新的契机。

### 关于SD3模型的详细介绍 #### SD3模型概述 SD3Stable Diffusion 的一种变体版本,专注于提供更高性能和更高质量的结果。它通过优化计算效率并集成多个子模块来提升整体表现。例如,在 ComfyUI 中使用 SD3 模型时,可以选择不同精度级别的预训练权重文件[^1]。 #### 不同精度模型的选择与特点 对于希望简化配置流程的用户来说,可以直接选用已经内置 VAE 和 CLIP 文本编码器的综合版模型文件: - **FP8 精度**: 文件名为 `sd3_medium_incl_clips_t5xxlfp8.safetensors`,适合追求极致速度但可能牺牲部分图像质量的情况。 - **FP16 精度**: 对应文件名是 `sd3_medium_incl_clips_t5xxlfp16.safetensors`,平衡了运行效率与视觉效果之间的关系。 - **标准精度 (未指定)**: 即普通的 `sd3_medium_incl_clips.safetensors` 版本,则提供了更为精确的画面渲染能力,不过可能会增加硬件负担[^1]。 这些选项允许使用者依据自己的设备条件灵活调整参数设置,从而获得最佳体验。 #### 如何获取及安装SD3模型? 要开始利用 SD3 创建艺术作品之前,需先完成必要的准备工作。这不仅涉及下载合适的模型文件本身,还包括理解整个生态系统的构成要素及其相互作用机制。正如某位创作者形象化描述那样,“把Stable Diffusion当作一个人”,当给这个人提供更多样化的‘教材’即各类风格数据集之后,他就能够创作出更加丰富多彩的艺术品出来[^2]。 具体操作指南方面可以从专门针对初学者设计的教学资料入手,比如某些公开分享的学习包里包含了详细的文档说明以及配套演示录像等内容,帮助新人快速掌握基本技能要点[^3]。 以下是基于 Python 脚本的一个简单例子展示如何加载自定义路径下的 .safetensors 类型模型: ```python from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler import torch model_path = "/path/to/your/sd3_model" # 替换为实际存储位置 pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=DPMSolverMultistepScheduler(), revision="fp16", torch_dtype=torch.float16) if not hasattr(pipe.unet.config, 'sample_size'): pipe.register_to_config(sample_size=(768, 768)) device = "cuda" pipe.to(device) ``` 以上代码片段展示了初始化管道对象的过程,并设置了特定调度算法用于加速推理阶段;同时也指定了目标 GPU 设备作为运算平台。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值