SiamDW:Deeper and Wider Siamese Networks for Real-Time Visual Tracking

SiamDW通过研究深度神经网络在Siamese网络中的应用,揭示了深度、宽度、感受野大小、网络步长和特征填充对跟踪性能的影响。提出新的残差模块CIR,解决padding问题,提高定位准确性,实现更强鲁棒性和准确性的实时视觉跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

Siamese网络由于具有良好的准确性和速度而引起视觉跟踪领域的广泛关注,但其使用的网络相对比较浅,比如AlexNet,难以充分发挥深度神经网络的优势。因此,作者对如何平衡卷积神经网络的深度和宽度从而实现跟踪的鲁棒性和准确性的问题进行研究。实验发现,直接将Siamese网络中的骨干网络换成深度更深的网络架构对跟踪效果没有提升。作者分析认为,一方面,大幅增大神经元感受野会降低特征判别性和定位精度;另一方面,卷积操作中padding操作会影响学习的准确性。为了解决上述问题,文中提出新的残差模块消除padding操作对跟踪效果的负面影响,并使用这些模块构造具有适宜感受野大小和网络步长的轻量级网络结构。实验结果表明,在Siamese网络中嵌入上述残差模块,能保证了跟踪的实时性。

背景

为了充分发挥深度神经网络的优势,作者直接将原Siamese网络中的浅层网络换成深度更深的网络,但实验效果不增反减,甚至随着深度加深,跟踪效果逐步下降。作者分析了Siamese网络的结构并得到影响网络跟踪性能的三个主要因素:神经元感受野的大小;网络步长;特征填充

  • 神经元感受野决定了计算特征时的图像区域大小,较大的感受野提供更丰富的上下文信息,较小的感受野可能难以完全捕捉目标对象的特征。
  • 网络步长影响了定位精度,对小目标物体影响更加显著;并控制着输出的特征图大小,影响特征判别性和跟踪准确性。
  • 对于一个全卷积网络结构,特征
### 关于Siamese Network用于对象跟踪的模型实例和教程 #### Siamese网络简介 Siamese网络是一种特殊的神经网络架构,通常由两个共享权重的子网络组成。这种结构特别适用于处理成对数据的任务,比如相似度比较或匹配问题[^1]。 #### SiamFC: Fully Convolutional Siamese Networks for Object Tracking SiamFC是一个经典的基于Siamese框架的目标跟踪算法。该方法通过构建一对卷积特征图来表示模板图像(即要追踪的对象)及其候选区域,并计算两者之间的响应得分以定位目标位置。此过程完全依赖于前馈操作而无需反向传播更新参数,在线运行效率极高。 ```python import torch.nn as nn class SiamFC(nn.Module): def __init__(self, anchor_num=5, feature_out=256): super(SiamFC, self).__init__() # 定义骨干网提取特征 self.featureExtract = nn.Sequential( nn.Conv2d(3, 96, kernel_size=(11, 11), stride=2), ... ) def forward(self, z_f, x_f): # 计算相关滤波器输出 responses = [] for i in range(len(z_f)): response = F.conv2d(x_f[i], z_f[i]) responses.append(response) return responses ``` #### DaSiamRPN: Deeper and Wider Siamese Networks for Real-Time Visual Tracking DaSiamRPN进一步改进了SiamFC的设计思路,引入了更深更宽广的ResNet作为基础特征抽取模块;同时增加了Region Proposal Network (RPN),使得模型能够更好地适应尺度变化并提高边界框回归精度。此外还提出了局部调整策略(Local Adjustment Strategy) 来缓解长期漂移现象。 #### 实践指南与资源链接 对于希望深入了解如何实现这些先进视觉跟踪技术的研究人员来说,GitHub上存在许多开源项目可以提供帮助。例如[siamrpn++](https://github.com/STVIR/pysot/tree/master/pysot/models/tracker/siamrpnpp_tracker.py)就是一个很好的起点,它实现了上述提到的一些变体版本并且提供了详细的文档说明以及预训练好的模型文件供下载测试使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值